Marianne N Lund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1776869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein oxidation in muscle foods: A review. Molecular Nutrition and Food Research, 2011, 55, 83-95.	1.5	783
2	Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. Journal of Agricultural and Food Chemistry, 2017, 65, 4537-4552.	2.4	456
3	High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science, 2007, 77, 295-303.	2.7	350
4	The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Science, 2007, 76, 226-233.	2.7	213
5	Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Science, 2013, 93, 538-546.	2.7	184
6	Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chemistry, 2011, 128, 276-283.	4.2	146
7	Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science and Technology, 2021, 110, 470-482.	7.8	124
8	Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links. Biochemical Journal, 2008, 410, 565-574.	1.7	109
9	Green tea extract impairs meat emulsion properties by disturbing protein disulfide cross-linking. Meat Science, 2015, 100, 2-9.	2.7	108
10	Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radical Biology and Medicine, 2016, 97, 148-157.	1.3	100
11	Thiol–Quinone Adduct Formation in Myofibrillar Proteins Detected by LC-MS. Journal of Agricultural and Food Chemistry, 2011, 59, 6900-6905.	2.4	95
12	Reactions of plant polyphenols in foods: Impact of molecular structure. Trends in Food Science and Technology, 2021, 112, 241-251.	7.8	78
13	4-Methylcatechol Inhibits Protein Oxidation in Meat but Not Disulfide Formation. Journal of Agricultural and Food Chemistry, 2011, 59, 10329-10335.	2.4	67
14	Ultrasound-assisted processing of Chlorella vulgaris for enhanced protein extraction. Journal of Applied Phycology, 2020, 32, 1709-1718.	1.5	61
15	Effect of high-oxygen atmosphere packaging on oxidative stability and sensory quality of two chicken muscles during chill storage. Food Packaging and Shelf Life, 2014, 1, 38-48.	3.3	58
16	Effects of dietary soybean oil on lipid and protein oxidation in pork patties during chill storage. Meat Science, 2008, 79, 727-733.	2.7	52
17	Oxidation of Porcine Myosin by Hypervalent Myoglobin: The Role of Thiol Groups. Journal of Agricultural and Food Chemistry, 2008, 56, 3297-3304.	2.4	50
18	Green Tea Polyphenols Decrease Strecker Aldehydes and Bind to Proteins in Lactose-Hydrolyzed UHT Milk. Journal of Agricultural and Food Chemistry, 2017, 65, 10550-10561.	2.4	46

#	Article	IF	CITATIONS
19	The Antibacterial Effect <i> In Vitro</i> of Honey Derived from Various Danish Flora. Dermatology Research and Practice, 2018, 2018, 1-10.	0.3	46
20	Liquid chromatography quadrupole-Orbitrap mass spectrometry for the simultaneous analysis of advanced glycation end products and protein-derived cross-links in food and biological matrices. Journal of Chromatography A, 2020, 1615, 460767.	1.8	44
21	Protein Thiols Undergo Reversible and Irreversible Oxidation during Chill Storage of Ground Beef as Detected by 4,4′-Dithiodipyridine. Journal of Agricultural and Food Chemistry, 2014, 62, 12008-12014.	2.4	40
22	Quantitation of α-Dicarbonyls and Advanced Glycation Endproducts in Conventional and Lactose-Hydrolyzed Ultrahigh Temperature Milk during 1 Year of Storage. Journal of Agricultural and Food Chemistry, 2019, 67, 12863-12874.	2.4	36
23	Influence of Malt Roasting on the Oxidative Stability of Sweet Wort. Journal of Agricultural and Food Chemistry, 2012, 60, 5652-5659.	2.4	35
24	Light exposure accelerates oxidative protein polymerization in beef stored in high oxygen atmosphere. Food Chemistry, 2019, 299, 125132.	4.2	35
25	Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study. Food Chemistry, 2019, 298, 125086.	4.2	34
26	Inhibition of Maillard Reactions by Replacing Galactose with Galacto-Oligosaccharides in Casein Model Systems. Journal of Agricultural and Food Chemistry, 2019, 67, 875-886.	2.4	32
27	Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radical Research, 2019, 53, 68-81.	1.5	32
28	Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions. Meat Science, 2014, 97, 231-236.	2.7	31
29	Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chemistry, 2015, 182, 27-34.	4.2	30
30	Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin. Free Radical Biology and Medicine, 2016, 97, 544-555.	1.3	29
31	Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Conversion and Biorefinery, 2021, 11, 1575-1585.	2.9	28
32	Beer Thiol-Containing Compounds and Redox Stability: Kinetic Study of 1-Hydroxyethyl Radical Scavenging Ability. Journal of Agricultural and Food Chemistry, 2013, 61, 9444-9452.	2.4	27
33	Reduction of NÎμ-(carboxymethyl) lysine by (â^')-epicatechin and (â^')-epigallocatechin gallate: The involvement of a possible trapping mechanism by catechin quinones. Food Chemistry, 2018, 266, 427-434.	4.2	27
34	The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. Journal of Endocrinology, 2017, 233, 369-379.	1.2	26
35	Effects of Protein-Derived Amino Acid Modification Products Present in Infant Formula on Metabolic Function, Oxidative Stress, and Intestinal Permeability in Cell Models. Journal of Agricultural and Food Chemistry, 2019, 67, 5634-5646.	2.4	26
36	Effect of high-oxygen atmosphere packaging on mechanical properties of single muscle fibres from bovine and porcine longissimus dorsi. European Food Research and Technology, 2008, 227, 1323-1328.	1.6	25

#	Article	IF	CITATIONS
37	Detection of Thiol Groups in Beer and Their Correlation with Oxidative Stability. Journal of the American Society of Brewing Chemists, 2011, 69, 163-169.	0.8	24
38	Competitive Reduction of Perferrylmyoglobin Radicals by Protein Thiols and Plant Phenols. Journal of Agricultural and Food Chemistry, 2014, 62, 11279-11288.	2.4	24
39	Effect of free cysteine on the denaturation and aggregation of holo α-lactalbumin. International Dairy Journal, 2018, 79, 52-61.	1.5	24
40	Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk. Journal of Agricultural and Food Chemistry, 2020, 68, 7718-7726.	2.4	24
41	Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis. Food Chemistry, 2022, 366, 130601.	4.2	24
42	Kinetics and Mechanism of Lactosylation of α-Lactalbumin. Journal of Agricultural and Food Chemistry, 2005, 53, 2095-2102.	2.4	23
43	Chemical Stability of Proteins in Foods: Oxidation and the Maillard Reaction. Annual Review of Food Science and Technology, 2022, 13, 35-58.	5.1	22
44	Phenolic Antioxidant Scavenging of Myosin Radicals Generated by Hypervalent Myoglobin. Journal of Agricultural and Food Chemistry, 2012, 60, 12020-12028.	2.4	21
45	Generation of Aggregates of α-Lactalbumin by UV-B Light Exposure. Journal of Agricultural and Food Chemistry, 2020, 68, 6701-6714.	2.4	21
46	Quantification of protein thiols using ThioGloÂ1 fluorescent derivatives and HPLC separation. Analyst, The, 2013, 138, 2096.	1.7	20
47	Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer. Journal of Agricultural and Food Chemistry, 2015, 63, 8254-8261.	2.4	20
48	Antioxidant Activity of a Combinatorial Library of Emulsifierâ^'Antioxidant Bioconjugates. Journal of Agricultural and Food Chemistry, 2008, 56, 9258-9268.	2.4	19
49	Protein Oxidation in Meat and Meat Products. Challenges for Antioxidative Protection. , 2017, , 315-337.		19
50	Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl- <scp> </scp> -Lysine during Incubation at 40 and 50 °C. Journal of Agricultural and Food Chemistry, 2019, 67, 6350-6358.	2.4	19
51	The effect of molecular structure of polyphenols on the kinetics of the trapping reactions with methylglyoxal. Food Chemistry, 2020, 319, 126500.	4.2	19
52	Determination of Sulfite in Beer Based on Fluorescent Derivatives and Liquid Chromatographic Separation. Journal of the American Society of Brewing Chemists, 2012, 70, 296-302.	0.8	18
53	Dissociation and reduction of covalent β-lactoglobulin–quinone adducts by dithiothreitol, tris(2-carboxyethyl)phosphine, or sodium sulfite. Analytical Biochemistry, 2015, 478, 40-48.	1.1	18
54	Effect of green tea catechins on physical stability and sensory quality of lactose-reduced UHT milk during storage for one year. International Dairy Journal, 2019, 95, 25-34.	1.5	17

#	Article	IF	CITATIONS
55	Characterisation of a stable radical from dark roasted malt in wort and beer. Food Chemistry, 2011, 125, 380-387.	4.2	16
56	Effects of disulphide bonds between added whey protein aggregates and other milk components on the rheological properties of acidified milk model systems. International Dairy Journal, 2016, 59, 1-9.	1.5	16
57	Combination of light and oxygen accelerates formation of covalent protein-polyphenol bonding during chill storage of meat added 4-methyl catechol. Food Chemistry, 2021, 334, 127611.	4.2	16
58	Protein oxidation in foods and food quality. , 2010, , 33-69.		15
59	Kinetic investigation of the trapping of NÎμ-(carboxymethyl)lysine by 4-methylbenzoquinone: A new mechanism to control NÎμ-(carboxymethyl)lysine levels in foods. Food Chemistry, 2018, 244, 25-28.	4.2	15
60	Green Tea Extract Decreases Arg-Derived Advanced Glycation Endproducts but Not Lys-Derived AGEs in UHT Milk during 1-Year Storage. Journal of Agricultural and Food Chemistry, 2020, 68, 14261-14273.	2.4	15
61	Quantitation of Protein Cysteine–Phenol Adducts in Minced Beef Containing 4-Methyl Catechol. Journal of Agricultural and Food Chemistry, 2020, 68, 2506-2515.	2.4	15
62	Influence of Barley Varieties on Wort Quality and Performance. Journal of Agricultural and Food Chemistry, 2013, 61, 1968-1976.	2.4	13
63	Kinetic Models for the Role of Protein Thiols during Oxidation in Beer. Journal of Agricultural and Food Chemistry, 2017, 65, 10820-10828.	2.4	13
64	Cleavage of Disulfide Bonds in Cystine by UV-B Illumination Mediated by Tryptophan or Tyrosine as Photosensitizers. Journal of Agricultural and Food Chemistry, 2020, 68, 6900-6909.	2.4	13
65	Ultrasound processing of coffee silver skin, brewer's spent grain and potato peel wastes for phenolic compounds and amino acids: a comparative study. Journal of Food Science and Technology, 2021, 58, 2273-2282.	1.4	13
66	Impact of UHT treatment and storage on liquid infant formula: Complex structural changes uncovered by centrifugal field-flow fractionation with multi-angle light scattering. Food Chemistry, 2021, 348, 129145.	4.2	13
67	Selective and sensitive UHPLC-ESI-Orbitrap MS method to quantify protein oxidation markers. Talanta, 2021, 234, 122700.	2.9	13
68	Formation of whey protein aggregates by partial hydrolysis and reduced thermal treatment. Food Hydrocolloids, 2022, 124, 107206.	5.6	13
69	Effect of Pasteurization on the Protein Composition and Oxidative Stability of Beer during Storage. Journal of Agricultural and Food Chemistry, 2012, 60, 12362-12370.	2.4	12
70	Control of α-Lactalbumin Aggregation by Modulation of Temperature and Concentration of Calcium and Cysteine. Journal of Agricultural and Food Chemistry, 2018, 66, 7110-7120.	2.4	12
71	Limitation of Maillard Reactions in Lactose-Reduced UHT Milk via Enzymatic Conversion of Lactose into Galactooligosaccharides during Production. Journal of Agricultural and Food Chemistry, 2020, 68, 3568-3575.	2.4	12
72	Effect of Protease Treatment during Mashing on Protein-Derived Thiol Content and Flavor Stability of Beer during Storage. Journal of the American Society of Brewing Chemists, 2015, 73, 287-295.	0.8	11

#	Article	IF	CITATIONS
73	Green extraction of proteins, umami and other free amino acids from brown macroalgae Ascophyllum nodosum and Fucus vesiculosus. Journal of Applied Phycology, 2021, 33, 4083-4091.	1.5	11
74	UHT treatment and storage of liquid infant formula affects protein digestion and release of bioactive peptides. Food and Function, 2022, 13, 344-355.	2.1	11
75	Site-Specific Characterization of Heat-Induced Disulfide Rearrangement in Beta-Lactoglobulin by Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2022, 70, 847-856.	2.4	11
76	Effect of Processing of Whey Protein Ingredient on Maillard Reactions and Protein Structural Changes in Powdered Infant Formula. Journal of Agricultural and Food Chemistry, 2022, 70, 319-332.	2.4	11
77	Maillard reaction products and amino acid cross-links in liquid infant formula: Effects of UHT treatment and storage. Food Chemistry, 2022, 396, 133687.	4.2	11
78	Storage stability of pasteurized non-filtered beer. Journal of the Institute of Brewing, 2013, 119, n/a-n/a.	0.8	9
79	Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2015, 63, 8501-8509.	2.4	9
80	Covalent Protein-Polyphenol Bonding as Initial Steps of Haze Formation in Beer. Journal of the American Society of Brewing Chemists, 2020, 78, 153-164.	0.8	9
81	The utilisation of amino acids by Debaryomyces hansenii and Yamadazyma triangularis associated with cheese. International Dairy Journal, 2021, 121, 105135.	1.5	9
82	Investigating challenges with scattering and inner filter effects in frontâ€face fluorescence by PARAFAC. Journal of Chemometrics, 2020, 34, e3286.	0.7	8
83	Temperature-dependency of unwanted aroma formation in reconstituted whey protein isolate solutions. International Dairy Journal, 2020, 104, 104653.	1.5	8
84	Oxidation of Whey Proteins during Thermal Treatment Characterized by a Site-Specific LC–MS/MS-Based Proteomic Approach. Journal of Agricultural and Food Chemistry, 2022, 70, 4391-4406.	2.4	7
85	Effect of solvent composition on the extraction of proteins from hemp oil processing stream. Journal of the Science of Food and Agriculture, 2022, 102, 6293-6298.	1.7	7
86	Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components. Food Chemistry, 2016, 199, 36-41.	4.2	5
87	Pulsed electric field (PEF) as an efficient technology for food additives and nutraceuticals development. , 2020, , 65-99.		5
88	Antioxidant Properties of Carnosine Re-evaluated in a Ferrylmyoglobin Model System and in Cooked Pork Patties. Journal of Agricultural and Food Chemistry, 2002, 50, 7164-7168.	2.4	4
89	Emulsifier-phenol bioconjugates as antioxidants. Molecular descriptors based on density functional theory in quantitative structure–activity relationships. Food Research International, 2013, 54, 230-238.	2.9	4
90	Quality of pilsner malt and roasted malt during storage. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	0.8	4

#	Article	IF	CITATIONS
91	Characterisation of protein-polyphenol interactions in beer during forced aging. Journal of the Institute of Brewing, 2020, 126, 371.	0.8	4
92	Application of ultrasound to obtain food additives and nutraceuticals. , 2021, , 111-141.		3
93	Increased protein-thiol solubilization in sweet wort by addition of proteases during mashing. Journal of the Institute of Brewing, 2014, 120, n/a-n/a.	0.8	2
94	Quantification of Protein-Derived Thiols during Atmosphere-Controlled Brewing in Laboratory Scale. Journal of the American Society of Brewing Chemists, 2016, 74, 30-35.	0.8	2
95	The Reducing Capacity of Thioredoxin on Oxidized Thiols in Boiled Wort. Journal of Agricultural and Food Chemistry, 2017, 65, 10101-10106.	2.4	2
96	Casein–casein interactions in the presence of dairy associated carbohydrates analysed using surface plasmon resonance. International Dairy Journal, 2020, 105, 104686.	1.5	2
97	Effect of Addition of Tryptophan on Aggregation of Apo-α-Lactalbumin Induced by UV-Light. Foods, 2021, 10, 1577.	1.9	2
98	Selection of Protease for Increased Solubilization of Protein Derived Thiols during Mashing with Limited Release of Free Amino Acids in Beer. Journal of the American Society of Brewing Chemists, 2016, 74, 224-230.	0.8	1
99	Detection of protein oxidation products by fluorescence spectroscopy and trilinear data decomposition: Proof of concept. Food Chemistry, 2022, 396, 133732.	4.2	1
100	Cysteine residues are responsible for the sulfurous off-flavor formed in heated whey protein solutions. Food Chemistry Molecular Sciences, 2022, 5, 100120.	0.9	1
101	Kinetic investigation of the reaction of 4-methylbenzoquinone with thiol and amine compounds: consequences for protein modification. Free Radical Biology and Medicine, 2015, 86, S24.	1.3	0
102	Role of oxidation and thermal unfolding in structural changes to beta-lactoglobulin. Free Radical Biology and Medicine, 2015, 86, S19-S20.	1.3	0
103	Probing the cumulative effects of unit operations and lactose to whey protein ratios on protein modifications in powdered model infant formula. International Dairy Journal, 2022, , 105397.	1.5	0