
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1776792/publications.pdf Version: 2024-02-01

LING MENO

#	Article	IF	CITATIONS
1	Trends, Drivers, and Mitigation of CO2 Emissions in the Guangdong–Hong Kong–Macao Greater Bay Area. Engineering, 2023, 23, 138-148.	3.2	8
2	The Role of Bike Sharing in Promoting Transport Resilience. Networks and Spatial Economics, 2022, 22, 567-585.	0.7	22
3	Entropy-based Chinese city-level MRIO table framework. Economic Systems Research, 2022, 34, 519-544.	1.2	51
4	Large inter-city inequality in consumption-based CO2 emissions for China's pearl river basin cities. Resources, Conservation and Recycling, 2022, 176, 105923.	5.3	34
5	Exploring household emission patterns and driving factors in Japan using machine learning methods. Applied Energy, 2022, 307, 118251.	5.1	23
6	Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams. Nature Communications, 2022, 13, 297.	5.8	26
7	Substantial transition to clean household energy mix in rural China. National Science Review, 2022, 9,	4.6	51
8	Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 2022, 12, 241-248.	8.1	51
9	Localisation economies, intellectual property rights protection and entrepreneurship in China: A Bayesian analysis of multi-level spatial correlation. Structural Change and Economic Dynamics, 2022, 61, 156-165.	2.1	9
10	The evolution of carbon footprint in the yangtze river delta city cluster during economic transition 2012-2015. Resources, Conservation and Recycling, 2022, 181, 106266.	5.3	36
11	Identifying critical energy-water paths and clusters within the urban agglomeration using machine learning algorithm. Energy, 2022, 250, 123880.	4.5	8
12	How do China's lockdown and post-COVID-19 stimuli impact carbon emissions and economic output? Retrospective estimates and prospective trajectories. IScience, 2022, 25, 104328.	1.9	14
13	Fullâ€scale, near realâ€ŧime multiâ€regional input–output table for the global emerging economies (EMERGING). Journal of Industrial Ecology, 2022, 26, 1218-1232.	2.8	12
14	The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies. Nature Energy, 2022, 7, 588-596.	19.8	25
15	Air pollution reduction and climate co-benefits in China's industries. Nature Sustainability, 2021, 4, 417-425.	11.5	148
16	Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view. Renewable and Sustainable Energy Reviews, 2021, 138, 110655.	8.2	58
17	The driving forces behind the change in energy consumption in developing countries. Environmental Research Letters, 2021, 16, 054002.	2.2	18
18	Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. Nature Sustainability, 2021, 4, 739-747.	11.5	84

#	Article	IF	CITATIONS
19	Supply chain effects of China's fast growing marine economy on greenhouse gas emissions. Environmental Research Letters, 2021, 16, 054061.	2.2	8
20	Can constructed wetlands be more land efficient than centralized wastewater treatment systems? A case study based on direct and indirect land use. Science of the Total Environment, 2021, 770, 144841.	3.9	11
21	Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
22	Destruction and Deflection: Evidence from American Antidumping Actions against China. Structural Change and Economic Dynamics, 2021, 57, 203-213.	2.1	4
23	Virtual carbon and water flows embodied in globalÂfashionÂtrade - a case study of denim products. Journal of Cleaner Production, 2021, 303, 127080.	4.6	25
24	Extended carbon footprint and emission transfer of world regions: With both primary and intermediate inputs into account. Science of the Total Environment, 2021, 775, 145578.	3.9	25
25	Sustainability and ecological efficiency of low-carbon power system: A concentrating solar power plant in China. Journal of Environmental Management, 2021, 290, 112659.	3.8	10
26	Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups. One Earth, 2021, 4, 1114-1126.	3.6	22
27	Embodied energy use of China's megacities: A comparative study of Beijing and Shanghai. Energy Policy, 2021, 155, 112243.	4.2	17
28	Drivers of fluctuating embodied carbon emissions in international services trade. One Earth, 2021, 4, 1322-1332.	3.6	16
29	The Consumptionâ€Based Carbon Emissions in the Jingâ€Jinâ€Ji Urban Agglomeration Over China's Economic Transition. Earth's Future, 2021, 9, e2021EF002132.	2.4	21
30	Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Scientific Data, 2021, 8, 244.	2.4	65
31	Decoupling without outsourcing? How China's consumption-based CO2 emissions have plateaued. IScience, 2021, 24, 103130.	1.9	34
32	Energy use flows in the supply chains of the world economy: A full account of both primary and intermediate inputs. Journal of Cleaner Production, 2021, 320, 128621.	4.6	6
33	Heterogeneity of consumption-based carbon emissions and driving forces in Indian states. Advances in Applied Energy, 2021, 4, 100039.	6.6	24
34	Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 2021, 12, 6308.	5.8	32
35	An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis. Energy Policy, 2020, 137, 111068.	4.2	31
36	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	5.8	30

#	Article	IF	CITATIONS
37	Dynamic Driving Forces of India's Emissions From Production and Consumption Perspectives. Earth's Future, 2020, 8, e2020EF001485.	2.4	16
38	Critical Rare-Earth Elements Mismatch Global Wind-Power Ambitions. One Earth, 2020, 3, 116-125.	3.6	72
39	Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers. Applied Energy, 2020, 276, 115484.	5.1	18
40	Embodied carbon emissions in China-US trade. Science China Earth Sciences, 2020, 63, 1577-1586.	2.3	32
41	Embodied carbon emissions in the supply chains of multinational enterprises. Nature Climate Change, 2020, 10, 1096-1101.	8.1	114
42	Global Sulfur Dioxide Emissions and the Driving Forces. Environmental Science & Technology, 2020, 54, 6508-6517.	4.6	82
43	Production Globalization Makes China's Exports Cleaner. One Earth, 2020, 2, 468-478.	3.6	22
44	Linkage analysis of economic consumption, pollutant emissions and concentrations based on a city-level multi-regional input–output (MRIO) model and atmospheric transport. Journal of Environmental Management, 2020, 270, 110819.	3.8	19
45	Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use. Science of the Total Environment, 2020, 736, 139582.	3.9	13
46	The unequal contribution to global energy consumption along the supply chain. Journal of Environmental Management, 2020, 268, 110701.	3.8	33
47	Impacts of Potential China's Environmental Protection Tax Reforms on Provincial Air Pollution Emissions and Economy. Earth's Future, 2020, 8, e2019EF001467.	2.4	15
48	Economic development and converging household carbon footprints in China. Nature Sustainability, 2020, 3, 529-537.	11.5	224
49	Regional determinants of China's consumption-based emissions in the economic transition. Environmental Research Letters, 2020, 15, 074001.	2.2	198
50	Carbon inequality and economic development across the Belt and Road regions. Journal of Environmental Management, 2020, 262, 110250.	3.8	80
51	Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading. Applied Energy, 2020, 261, 114398.	5.1	26
52	The mutual benefits from Sino-Africa trade: Evidence on emission transfer along the global supply chain. Journal of Environmental Management, 2020, 263, 110332.	3.8	25
53	The impacts of the trade liberalization of environmental goods on power system and CO2 emissions. Energy Policy, 2020, 140, 111173.	4.2	12
54	An embodied energy perspective of urban economy: A three-scale analysis for Beijing 2002–2012 with headquarter effect. Science of the Total Environment, 2020, 732, 139097.	3.9	16

#	Article	IF	CITATIONS
55	Carbon footprint in building distributed energy system: An optimization-based feasibility analysis for potential emission reduction. Journal of Cleaner Production, 2019, 239, 117990.	4.6	32
56	The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers. Nature Communications, 2019, 10, 3281.	5.8	28
57	Quantity and quality of China's water from demand perspectives. Environmental Research Letters, 2019, 14, 124004.	2.2	7
58	Kazakhstan's CO2 emissions in the post-Kyoto Protocol era: Production- and consumption-based analysis. Journal of Environmental Management, 2019, 249, 109393.	3.8	30
59	The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors. One Earth, 2019, 1, 138-148.	3.6	91
60	Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth, 2019, 1, 126-137.	3.6	58
61	Energy use by globalized economy: Total-consumption-based perspective via multi-region input-output accounting. Science of the Total Environment, 2019, 662, 65-76.	3.9	40
62	Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD). Energy Economics, 2019, 81, 835-847.	5.6	67
63	The impact of environmental protection tax on sectoral and spatial distribution of air pollution emissions in China. Environmental Research Letters, 2019, 14, 054013.	2.2	41
64	Assessing the economic impacts of IT service shutdown during the York flood of 2015 in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180871.	1.0	14
65	Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan. Applied Energy, 2019, 247, 350-362.	5.1	52
66	Improving the Imbalanced Global Supply Chain of Phosphorus Fertilizers. Earth's Future, 2019, 7, 638-651.	2.4	18
67	The health benefits and economic effects of cooperative PM2.5 control: A cost-effectiveness game model. Journal of Cleaner Production, 2019, 228, 1572-1585.	4.6	24
68	Frequent interactions of Tibet's CO ₂ emissions with those of other regions in China. Earth's Future, 2019, 7, 491-502.	2.4	12
69	Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 2019, 10, 1484.	5.8	126
70	Initial Declines in China's Provincial Energy Consumption and Their Drivers. Joule, 2019, 3, 1163-1168.	11.7	26
71	Peak cementâ€related CO ₂ emissions and the changes in drivers in China. Journal of Industrial Ecology, 2019, 23, 959-971.	2.8	64
72	Linking cityâ€level input–output table to urban energy footprint: Construction framework and application. Journal of Industrial Ecology, 2019, 23, 781-795.	2.8	46

#	Article	IF	CITATIONS
73	A psychophysical measurement on subjective well-being and air pollution. Nature Communications, 2019, 10, 5473.	5.8	50
74	Characterising climate change discourse on social media during extreme weather events. Global Environmental Change, 2019, 54, 50-60.	3.6	55
75	Carbon emissions of cities from a consumption-based perspective. Applied Energy, 2019, 235, 509-518.	5.1	198
76	Freshwater costs of seawater desalination: Systems process analysis for the case plant in China. Journal of Cleaner Production, 2019, 212, 677-686.	4.6	20
77	Carbon emission imbalances and the structural paths of Chinese regions. Applied Energy, 2018, 215, 396-404.	5.1	118
78	How modifications of China's energy data affect carbon mitigation targets. Energy Policy, 2018, 116, 337-343.	4.2	48
79	Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China's iron and steel industry. Journal of Cleaner Production, 2018, 185, 331-341.	4.6	51
80	Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives. Environmental Science & Technology, 2018, 52, 6380-6389.	4.6	34
81	China's "Exported Carbon―Peak: Patterns, Drivers, and Implications. Geophysical Research Letters, 2018, 45, 4309-4318.	1.5	124
82	China CO2 emission accounts 1997–2015. Scientific Data, 2018, 5, 170201.	2.4	824
83	Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls. Environmental Science & amp; Technology, 2018, 52, 2036-2045.	4.6	45
84	A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012. Scientific Data, 2018, 5, 180155.	2.4	105
85	Temporal change in India's imbalance of carbon emissions embodied in international trade. Applied Energy, 2018, 231, 914-925.	5.1	43
86	Assessment of the pollution–health–economics nexus in China. Atmospheric Chemistry and Physics, 2018, 18, 14433-14443.	1.9	22
87	The role of intermediate trade in the change of carbon flows within China. Energy Economics, 2018, 76, 303-312.	5.6	41
88	Decreases in global beer supply due to extreme drought and heat. Nature Plants, 2018, 4, 964-973.	4.7	153
89	Atmospheric Mercury Outflow from China and Interprovincial Trade. Environmental Science & Technology, 2018, 52, 13792-13800.	4.6	16
90	Outsourcing natural resource requirements within China. Journal of Environmental Management, 2018, 228, 292-302.	3.8	17

#	Article	IF	CITATIONS
91	Socioeconomic determinants of China's growing CH4 emissions. Journal of Environmental Management, 2018, 228, 103-116.	3.8	26
92	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	5.8	87
93	The rise of South–South trade and its effect on global CO2 emissions. Nature Communications, 2018, 9, 1871.	5.8	328
94	Structural decline in China's CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11, 551-555.	5.4	340
95	Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Applied Energy, 2018, 226, 1076-1086.	5.1	125
96	City-level climate change mitigation in China. Science Advances, 2018, 4, eaaq0390.	4.7	287
97	The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002–2012. Environmental Pollution, 2018, 241, 172-181.	3.7	52
98	Non O ₂ Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis. Earth's Future, 2018, 6, 103-116.	2.4	41
99	Rapid growth of petroleum coke consumption and its related emissions in China. Applied Energy, 2018, 226, 494-502.	5.1	60
100	China's Energy Consumption in the New Normal. Earth's Future, 2018, 6, 1007-1016.	2.4	101
101	Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China. Frontiers of Earth Science, 2017, 11, 46-62.	0.9	6
102	The consumption-based black carbon emissions of China's megacities. Journal of Cleaner Production, 2017, 161, 1275-1282.	4.6	80
103	Identifying primary energy requirements in structural path analysis: A case study of China 2012. Applied Energy, 2017, 191, 425-435.	5.1	105
104	Pattern changes in determinants of Chinese emissions. Environmental Research Letters, 2017, 12, 074003.	2.2	217
105	Traditional and new POPs in environments along the Bohai and Yellow Seas: An overview of China and South Korea. Chemosphere, 2017, 169, 503-515.	4.2	82
106	Unequal household carbon footprints in China. Nature Climate Change, 2017, 7, 75-80.	8.1	345
107	Energy consumption and CO ₂ emissions in Tibet and its cities in 2014. Earth's Future, 2017, 5, 854-864.	2.4	48
108	Demand-driven air pollutant emissions for a fast-developing region in China. Applied Energy, 2017, 204, 131-142.	5.1	52

#	Article	IF	CITATIONS
109	Demand-driven Primary Energy Requirements by Chinese Economy 2012. Energy Procedia, 2017, 105, 3132-3137.	1.8	4
110	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. Journal of Cleaner Production, 2017, 142, 2227-2236.	4.6	346
111	Chinese CO2 emission flows have reversed since the global financial crisis. Nature Communications, 2017, 8, 1712.	5.8	678
112	Globalization and pollution: tele-connecting local primary PM _{2.5} emissions to global consumption. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160380.	1.0	77
113	Potential health benefits of controlling dust emissions in Beijing. Environmental Pollution, 2016, 213, 850-859.	3.7	32
114	Trend and driving forces of Beijing's black carbon emissions from sectoral perspectives. Journal of Cleaner Production, 2016, 112, 1272-1281.	4.6	32
115	The impact of domestic and foreign trade on energy-related PM emissions in Beijing. Applied Energy, 2016, 184, 853-862.	5.1	64
116	Interprovincial Reliance for Improving Air Quality in China: A Case Study on Black Carbon Aerosol. Environmental Science & Technology, 2016, 50, 4118-4126.	4.6	59
117	Virtual water accounting for a building construction engineering project with nine sub-projects: a case in E-town, Beijing. Journal of Cleaner Production, 2016, 112, 4691-4700.	4.6	39
118	Tracing Primary PM _{2.5} emissions via Chinese supply chains. Environmental Research Letters, 2015, 10, 054005.	2.2	130
119	Virtual water accounting for building: case study for E-town, Beijing. Journal of Cleaner Production, 2014, 68, 7-15.	4.6	48
120	Embodied exergy-based assessment of energy and resource consumption of buildings. Frontiers of Earth Science, 2014, 8, 150-162.	0.9	10
121	Ecological analysis of a typical farm-scale biogas plant in China. Frontiers of Earth Science, 2014, 8, 375-384.	0.9	10
122	Emergy-based hybrid evaluation for commercial construction engineering: A case study in BDA. Ecological Indicators, 2014, 47, 179-188.	2.6	28
123	A Comparative Study on CCS and Renewable Energy in China: Challenges and Policy Choices. Journal of Environmental Accounting and Management, 2014, 2, 133-143.	0.3	3
124	Comparison of greenhouse gas emission accounting for a constructed wetland wastewater treatment system. Ecological Informatics, 2012, 12, 85-92.	2.3	11
125	Renewable resource for agricultural ecosystem in China: Ecological benefit for biogas by-product for planting. Ecological Informatics, 2012, 12, 101-110.	2.3	50
126	Inventory and input–output analysis of CO2 emissions by fossil fuel consumption in Beijing 2007. Ecological Informatics, 2012, 12, 93-100.	2.3	88