Banglin Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1776679/banglin-chen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60,030 113 240 394 h-index g-index citations papers 68,228 8.14 11.1 425 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
394	Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient CH/CO separation <i>Nature Communications</i> , 2022 , 13, 200	17.4	20
393	Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption <i>Chemical Communications</i> , 2022 ,	5.8	11
392	Expanding dynamic framework materials into COFs through HOF approach. <i>CheM</i> , 2022 , 8, 7-9	16.2	
391	Emerging microporous HOF materials to address global energy challenges. <i>Joule</i> , 2022 , 6, 22-27	27.8	7
390	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
389	Robust and Radiation-Resistant Hofmann-Type Metal-Organic Frameworks for Record Xenon/Krypton Separation <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
388	Collaborative pore partition and pore surface fluorination within a metalorganic framework for high-performance C2H2/CO2 separation. <i>Chemical Engineering Journal</i> , 2022 , 432, 134433	14.7	6
387	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. <i>Chemical Engineering Journal</i> , 2022 , 431, 134184	14.7	7
386	Creating Optimal Pockets in a Clathrochelate-Based Metal-Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	9
385	Identifying the Gate-Opening Mechanism in the Flexible Metal-Organic Framework UTSA-300 <i>Inorganic Chemistry</i> , 2022 ,	5.1	2
384	A peroxide-based conjugated triazine framework as a luminescent probe for p-nitroaniline and Fe3+ detection. <i>Polymer</i> , 2022 , 246, 124752	3.9	
383	An ultramicroporous metal®rganic framework with dual functionalities for high sieving separation of CO2 from CH4 and N2. <i>Chemical Engineering Journal</i> , 2022 , 446, 137101	14.7	2
382	A Molecular Compound for Highly Selective Purification of Ethylene. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	4
381	Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. <i>Advanced Science</i> , 2021 , e2104234	13.6	4
380	A dynamic MOF for efficient purification of propylene. <i>Science China Chemistry</i> , 2021 , 64, 2053	7.9	O
379	Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8
378	Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9604-9609	16.4	26

377	A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10304-10	31104	41
376	Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material. <i>Angewandte Chemie</i> , 2021 , 133, 9690-9695	3.6	7
375	A Fluorescent Metal-Organic Framework for Food Real-Time Visual Monitoring. <i>Advanced Materials</i> , 2021 , 33, e2008020	24	31
374	Robust Biological Hydrogen-Bonded Organic Framework with Post-Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visible-Light-Driven CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8983-8989	16.4	32
373	A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. <i>Angewandte Chemie</i> , 2021 , 133, 10392-10398	3.6	14
372	Robust Biological Hydrogen-Bonded Organic Framework with Post-Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visible-Light-Driven CO2 Reduction. <i>Angewandte Chemie</i> , 2021 , 133, 9065-	.9 0 71	4
371	Stable Eu/Cu-Functionalized Supramolecular Zinc(II) Complexes as Fluorescent Probes for Turn-On and Ratiometric Detection of Hydrogen Sulfide. <i>ACS Applied Materials & Detection of Hydrogen Sulfide</i> . <i>ACS Applied Materials & Detection of Hydrogen Sulfide</i> .	1-28537	9 ¹⁰
370	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7104-7	1 1 8.4	45
369	Metal©rganic Frameworks for Photo/Electrocatalysis. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100033	1.6	47
368	Realization of Ethylene Production from Its Quaternary Mixture through Metal-Organic Framework Materials. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2021 , 13, 22514-22520	9.5	8
367	Benchmark C2H2/CO2 Separation in an Ultra-Microporous Metal Drganic Framework via Copper(I)-Alkynyl Chemistry. <i>Angewandte Chemie</i> , 2021 , 133, 16131-16138	3.6	10
366	Progress in Multifunctional Metal-Organic Frameworks/Polymer Hybrid Membranes. <i>Chemistry - A European Journal</i> , 2021 , 27, 12940-12952	4.8	3
365	Deep Desulfurization with Record SO Adsorption on the Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9040-9047	16.4	24
364	Benchmark C H /CO Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl Chemistry. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15995-16002	16.4	29
363	A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. <i>Angewandte Chemie</i> , 2021 , 133, 20563-20569	3.6	2
362	A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20400-20406	16.4	26
361	MOF-Nanocomposite Mixed-Matrix Membrane for Dual-Luminescence Ratiometric Temperature Sensing. <i>Advanced Optical Materials</i> , 2021 , 9, 2100945	8.1	20
360	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. <i>Nano Research</i> , 2021 , 14, 507-511	10	24

359	Confined Thermolysis for Oriented N-Doped Carbon Supported Pd toward Stable Catalytic and Energy Storage Applications. <i>Small</i> , 2021 , 17, e2002811	11	4
358	Highly Specific Coordination-Driven Self-Assembly of 2D Heterometallic Metal-Organic Frameworks with Unprecedented Johnson-type () Nonanuclear Zr-Oxocarboxylate Clusters. <i>Journal of the American Chemical Society</i> , 2021 , 143, 657-663	16.4	8
357	Embedding Red Emitters in the NbO-Type Metal-Organic Frameworks for Highly Sensitive Luminescence Thermometry over Tunable Temperature Range. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 11078-11088	9.5	19
356	Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. <i>Nature Chemistry</i> , 2021 , 13, 933-939	17.6	45
355	Efficient CH/CO Separation in Ultramicroporous Metal-Organic Frameworks with Record CH Storage Density. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14869-14876	16.4	12
354	Achieving High Performance Metal-Organic Framework Materials through Pore Engineering. <i>Accounts of Chemical Research</i> , 2021 , 54, 3362-3376	24.3	37
353	Dense Packing of Acetylene in a Stable and Low-Cost Metal-Organic Framework for Efficient C H /CO Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25068-25074	16.4	22
352	A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogen-Bonded Organic Framework for Propyne/Propylene Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25	942-25	19 ⁸ 8
351	Multifunctional Pd/MOFs@MOFs Confined Core-Shell Catalysts with Wrinkled Surface for Selective Catalysis. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 3743-3747	4.5	2
350	Highly Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Metal-Organic Framework. <i>Advanced Materials</i> , 2021 , 33, e2105880	24	14
349	An anthracene based conjugated triazine framework as a luminescent probe for selective sensing of p-nitroaniline and Fe(III) ions. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6568-6574	7.8	6
348	K-Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation <i>Angewandte Chemie - International Edition</i> , 2021 , e202116850	16.4	O
347	Light-gated cation-selective transport in metal B rganic framework membranes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11399-11405	13	27
346	Optimizing Pore Space for Flexible-Robust Metal-Organic Framework to Boost Trace Acetylene Removal. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9744-9751	16.4	66
345	A robust Th-azole framework for highly efficient purification of CH from a CH/CH/CH mixture. <i>Nature Communications</i> , 2020 , 11, 3163	17.4	83
344	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12478-12485	16.4	73
343	Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. <i>Advanced Materials</i> , 2020 , 32, e1907995	24	48
342	Metal-Organic Frameworks as a Versatile Platform for Proton Conductors. <i>Advanced Materials</i> , 2020 , 32, e1907090	24	118

(2020-2020)

341	Gas Separation via Hybrid Metal@rganic Framework/Polymer Membranes. <i>Trends in Chemistry</i> , 2020 , 2, 254-269	14.8	38
340	Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation. <i>Chemical Society Reviews</i> , 2020 , 49, 5359-5406	58.5	148
339	Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage. <i>Nature Communications</i> , 2020 , 11, 1047	17.4	46
338	A Light-Responsive Metal©rganic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. <i>Angewandte Chemie</i> , 2020 , 132, 7806-7811	3.6	5
337	Construction of a functionalized hierarchical pore metal-organic framework via a palladium-reduction induced strategy. <i>Nanoscale</i> , 2020 , 12, 6250-6255	7.7	6
336	A Light-Responsive Metal-Organic Framework Hybrid Membrane with High On/Off Photoswitchable Proton Conductivity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7732-7737	16.4	51
335	A novel hydrogen-bonded organic framework for the sensing of two representative organic arsenics. <i>Canadian Journal of Chemistry</i> , 2020 , 98, 352-357	0.9	9
334	A microporous metal-organic framework with basic sites for efficient C2H2/CO2 separation. Journal of Solid State Chemistry, 2020 , 284, 121209	3.3	10
333	Mixed Metal Drganic Framework with Multiple Binding Sites for Efficient C2H2/CO2 Separation. <i>Angewandte Chemie</i> , 2020 , 132, 4426-4430	3.6	32
332	Coordination assembly of 2D ordered organic metal chalcogenides with widely tunable electronic band gaps. <i>Nature Communications</i> , 2020 , 11, 261	17.4	23
331	Mechanochemical synthesis of an ethylene sieve UTSA-280. <i>Journal of Solid State Chemistry</i> , 2020 , 287, 121321	3.3	3
330	An Ultramicroporous Metal-Organic Framework for High Sieving Separation of Propylene from Propane. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17795-17801	16.4	67
329	Emerging 2D functional metal-organic framework materials. <i>National Science Review</i> , 2020 , 7, 3-5	10.8	3
328	Mixed Metal-Organic Framework with Multiple Binding Sites for Efficient C H /CO Separation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4396-4400	16.4	169
327	Novel route to size-controlled synthesis of MnFeO@MOF core-shell nanoparticles. <i>Journal of Solid State Chemistry</i> , 2020 , 283, 121127-121127	3.3	3
326	Microporous Metal-Organic Framework Materials for Gas Separation. <i>CheM</i> , 2020 , 6, 337-363	16.2	234
325	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 633-640	16.4	86
324	Boosting Ethylene/Ethane Separation within Copper(I)-Chelated Metal-Organic Frameworks through Tailor-Made Aperture and Specific Ecomplexation. <i>Advanced Science</i> , 2020 , 7, 1901918	13.6	41

323	Doubly Interpenetrated Metal-Organic Framework of pcu Topology for Selective Separation of Propylene from Propane. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 48712-48717	9.5	8
322	A novel expanded metal-organic framework for balancing volumetric and gravimetric methane storage working capacities. <i>Chemical Communications</i> , 2020 , 56, 13117-13120	5.8	6
321	Isoreticular Microporous Metal-Organic Frameworks for Carbon Dioxide Capture. <i>Inorganic Chemistry</i> , 2020 , 59, 17143-17148	5.1	11
320	Design and applications of water-stable metal-organic frameworks: status and challenges. <i>Coordination Chemistry Reviews</i> , 2020 , 423, 213507	23.2	41
319	Boosting the photoreduction activity of Cr(VI) in metal®rganic frameworks by photosensitiser incorporation and framework ionization. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17219-17228	13	14
318	Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14399-14416	16.4	132
317	A Robust Mixed-Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. Angewandte Chemie - International Edition, 2020 , 59, 21752-21757	16.4	48
316	Controllable broadband multicolour single-mode polarized laser in a dye-assembled homoepitaxial MOF microcrystal. <i>Light: Science and Applications</i> , 2020 , 9, 138	16.7	18
315	Tuning Gate-Opening of a Flexible Metal-Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie - International Edition, 2020 , 59, 22756-22762	16.4	73
314	Tuning Gate-Opening of a Flexible Metal®rganic Framework for Ternary Gas Sieving Separation. <i>Angewandte Chemie</i> , 2020 , 132, 22944-22950	3.6	21
313	An Ultramicroporous Metal Drganic Framework for Sieving Separation of Carbon Dioxide from Methane. <i>Small Structures</i> , 2020 , 1, 2000022	8.7	16
312	A Robust Mixed-Lanthanide PolyMOF Membrane for Ratiometric Temperature Sensing. <i>Angewandte Chemie</i> , 2020 , 132, 21936-21941	3.6	15
311	A microporous metal-organic framework with naphthalene diimide groups for high methane storage. <i>Dalton Transactions</i> , 2020 , 49, 3658-3661	4.3	21
310	Reversed ethane/ethylene adsorption in a metal-organic framework introduction of oxygen. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 593-593	3.2	14
309	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. <i>Nature Communications</i> , 2019 , 10, 3861	17.4	98
308	Reversing CH-CO adsorption selectivity in an ultramicroporous metal-organic framework platform. <i>Chemical Communications</i> , 2019 , 55, 11354-11357	5.8	25
307	Tailoring the pore geometry and chemistry in microporous metal-organic frameworks for high methane storage working capacity. <i>Chemical Communications</i> , 2019 , 55, 11402-11405	5.8	7
306	Microporous Copper Isophthalate Framework of mot Topology for C2H2/CO2 Separation. <i>Crystal Growth and Design</i> , 2019 , 19, 5829-5835	3.5	27

305	Multifunctional porous hydrogen-bonded organic framework materials. <i>Chemical Society Reviews</i> , 2019 , 48, 1362-1389	58.5	358
304	Our journey of developing multifunctional metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2019 , 384, 21-36	23.2	86
303	A metalBrganic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3128-3134	13	82
302	A microporous metal-organic framework of sql topology for C2H2/CO2 separation. <i>Inorganica Chimica Acta</i> , 2019 , 495, 118938	2.7	24
301	Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8737-8740	16.4	82
300	Air-Free Synthesis of a Ferrous Metal-Organic Framework Featuring HKUST-1 Structure and its MBsbauer Spectrum. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2019 , 645, 797-800	1.3	6
299	Robust Microporous Metal®rganic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. <i>Angewandte Chemie</i> , 2019 , 131, 10315-10320	3.6	12
298	Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10209-10	029:4	45
297	Tunable titanium metal®rganic frameworks with infinite 1D Ti® rods for efficient visible-light-driven photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11928-11933	13	153
296	Pore Space Partition within a Metal-Organic Framework for Highly Efficient CH/CO Separation. Journal of the American Chemical Society, 2019 , 141, 4130-4136	16.4	190
295	A Flexible Microporous Hydrogen-Bonded Organic Framework. <i>Crystal Growth and Design</i> , 2019 , 19, 518	3 4. 518	821
294	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. <i>Science Advances</i> , 2019 , 5, eaaw4515	14.3	54
293	Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework. <i>Chemical Engineering Journal</i> , 2019 , 378, 122196	14.7	44
292	Single Crystal Perovskite Microplate for High-Order Multiphoton Excitation. <i>Small Methods</i> , 2019 , 3, 190	D <u>@3.</u> % 6	9
291	Porous metal-organic frameworks for gas storage and separation: Status and challenges. <i>EnergyChem</i> , 2019 , 1, 100006	36.9	235
290	Loading Photochromic Molecules into a Luminescent Metal-Organic Framework for Information Anticounterfeiting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18025-18031	16.4	98
289			
	Of HOF hosts. Nature Chemistry, 2019 , 11, 1078-1080	17.6	4

287	A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. <i>Chemical Communications</i> , 2019 , 56, 66-69	5.8	33
286	Microporous Metal-Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7,	8.3	39
285	Construction of Hierarchical Metal-Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO Conversion. <i>Advanced Materials</i> , 2019 , 31, e1904969	24	67
284	Construction of a thiourea-based metalorganic framework with open Ag+ sites for the separation of propene/propane mixtures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25567-25572	13	17
283	Dye-Modified Metal-Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. <i>ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell.</i>	3- 47 25	8 ²⁴
282	MetalBrganic framework coated titanium dioxide nanorod array pB heterojunction photoanode for solar water-splitting. <i>Nano Research</i> , 2019 , 12, 643-650	10	50
281	Confinement of Perovskite-QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. <i>Advanced Materials</i> , 2019 , 31, e1806897	24	79
280	Low-Cost and High-Performance Microporous Metal®rganic Framework for Separation of Acetylene from Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1667-1672	8.3	33
279	Exploration of porous metalBrganic frameworks for gas separation and purification. <i>Coordination Chemistry Reviews</i> , 2019 , 378, 87-103	23.2	368
278	A Metal-Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. <i>Advanced Materials</i> , 2018 , 30, e1704792	24	81
277	Gas Separation: A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials (Adv. Mater. 10/2018). <i>Advanced Materials</i> , 2018 , 30, 1870068	24	3
276	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO Combined with Ultrahigh Uptake Capacity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 16628-16635	9.5	61
275	Efficient separation of CH from CH/CO mixtures in an acid-base resistant metal-organic framework. <i>Chemical Communications</i> , 2018 , 54, 4846-4849	5.8	46
274	A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials. <i>Advanced Materials</i> , 2018 , 30, 1705374	24	92
273	A microporous metal B rganic framework with commensurate adsorption and highly selective separation of xenon. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4752-4758	13	49
272	Ordered macro-microporous metal-organic framework single crystals. <i>Science</i> , 2018 , 359, 206-210	33.3	570
271	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4596-4603	16.4	115
270	Current Status of Porous Metal®rganic Frameworks for Methane Storage 2018 , 163-198		2

269	Fine-tuning of nano-traps in a stable metal b rganic framework for highly efficient removal of propyne from propylene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6931-6937	13	57
268	Porous metalorganic frameworks for fuel storage. <i>Coordination Chemistry Reviews</i> , 2018 , 373, 167-198	23.2	169
267	Metal®rganic Framework with Trifluoromethyl Groups for Selective C2H2 and CO2 Adsorption. Crystal Growth and Design, 2018 , 18, 4522-4527	3.5	18
266	Nickel-4Q(3,5-dicarboxyphenyl)-2,2Q6Q?-terpyridine Framework: Efficient Separation of Ethylene from Acetylene/Ethylene Mixtures with a High Productivity. <i>Inorganic Chemistry</i> , 2018 , 57, 9489-9494	5.1	22
265	Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. <i>Applied Optics</i> , 2018 , 57, 6598-6604	1.7	16
264	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil-Water Separation. <i>ACS Applied Materials & Separation (Material Separ</i>	9.5	83
263	New Progress of Microporous Metal Drganic Frameworks in CO2 Capture and Separation 2018 , 112-179)	1
262	Highly selective room temperature acetylene sorption by an unusual triacetylenic phosphine MOF. <i>Chemical Communications</i> , 2018 , 54, 9937-9940	5.8	23
261	Kinetic separation of propylene over propane in a microporous metal-organic framework. <i>Chemical Engineering Journal</i> , 2018 , 354, 977-982	14.7	67
260	Porous Coordination Polymers for Heterogeneous Catalysis. Current Organic Chemistry, 2018, 22, 1773-	1 <u>7</u> 7. 9 1	3
259	A DNA-Threaded ZIF-8 Membrane with High Proton Conductivity and Low Methanol Permeability. <i>Advanced Materials</i> , 2018 , 30, 1705155	24	101
258	Separation of C2 hydrocarbons from methane in a microporous metal-organic framework. <i>Journal of Solid State Chemistry</i> , 2018 , 258, 346-350	3.3	25
257	MIL-100Cr with open Cr sites for a record NO capture. <i>Chemical Communications</i> , 2018 , 54, 14061-14064	4 5.8	19
256	Reticular Chemistry of Multifunctional Metal-Organic Framework Materials. <i>Israel Journal of Chemistry</i> , 2018 , 58, 949-961	3.4	16
255	Robust Nanoporous Supramolecular Network Through Charge-Transfer Interaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 43987-43992	9.5	5
254	A Metal-Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15183-15188	16.4	83
253	A Metal®rganic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. <i>Angewandte Chemie</i> , 2018 , 130, 15403-15408	3.6	30
252	Bimetallic Hofmann-Type Metal Drganic Framework Nanoparticles for Efficient Electrocatalysis of Oxygen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2018 ,	6.1	14

251	Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal Drganic Frameworks. <i>Angewandte Chemie</i> , 2018 , 130, 16252-1625	3 .6	47
250	Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16020-16025	16.4	121
249	Molecular sieving of ethylene from ethane using a rigid metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 1128-1133	27	326
248	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. <i>Science</i> , 2018 , 362, 443-446	33.3	478
247	Conjugated Microporous Polymers with Rigid Backbones for Organic Solvent Nanofiltration. <i>CheM</i> , 2018 , 4, 2269-2271	16.2	11
246	Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12940-12946	16.4	186
245	Reducing CO2 with Stable Covalent Organic Frameworks. <i>Joule</i> , 2018 , 2, 1030-1032	27.8	15
244	Two-dimensional metal b rganic frameworks for selective separation of CO2/CH4 and CO2/N2. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1514-1519	7.8	23
243	From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework. <i>Chemistry - A European Journal</i> , 2017 , 23, 4774-4777	4.8	58
242	Collaborative interactions to enhance gas binding energy in porous metal-organic frameworks. <i>IUCrJ</i> , 2017 , 4, 106-107	4.7	1
241	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal Drganic Framework. <i>Crystal Growth and Design</i> , 2017 , 17, 2172-2177	3.5	21
240	Periodically Aligned Dye Molecules Integrated in a Single MOF Microcrystal Exhibit Single-Mode Linearly Polarized Lasing. <i>Advanced Optical Materials</i> , 2017 , 5, 1601040	8.1	26
239	Microporous Metal Drganic Framework with Exposed Amino Functional Group for High Acetylene Storage and Excellent C2H2/CO2 and C2H2/CH4 Separations. <i>Crystal Growth and Design</i> , 2017 , 17, 2319-	3 :522	42
238	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8292-8296	13	50
237	An amino-coordination metal®rganic framework for highly selective C2H2/CH4 and C2H2/C2H4 separations through the appropriate control of window sizes. <i>RSC Advances</i> , 2017 , 7, 20795-20800	3.7	14
236	A two-dimensional microporous metalBrganic framework for highly selective adsorption of carbon dioxide and acetylene. <i>Chinese Chemical Letters</i> , 2017 , 28, 1653-1658	8.1	21
235	A microporous metalorganic framework for selective C 2 H 2 and CO 2 separation. <i>Journal of Solid State Chemistry</i> , 2017 , 252, 138-141	3.3	24
234	Predictive models of gas sorption in a metal-organic framework with open-metal sites and small pore sizes. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 18587-18602	3.6	20

233	Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7648-7656	16.4	65
232	Ultrahigh and Selective SO Uptake in Inorganic Anion-Pillared Hybrid Porous Materials. <i>Advanced Materials</i> , 2017 , 29, 1606929	24	127
231	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017 , 139, 8022-8028	16.4	263
230	Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7733-7736	16.4	177
229	Straightforward Loading of Imidazole Molecules into Metal-Organic Framework for High Proton Conduction. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15604-15607	16.4	219
228	Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metal b rganic framework. <i>CrystEngComm</i> , 2017 , 19, 6896-6901	3.3	21
227	A luminescent cerium metal-organic framework for the turn-on sensing of ascorbic acid. <i>Chemical Communications</i> , 2017 , 53, 11221-11224	5.8	84
226	A flexible metalBrganic framework with a high density of sulfonic acid sites for proton conduction. <i>Nature Energy</i> , 2017 , 2, 877-883	62.3	377
225	Highly Interpenetrated Robust Microporous Hydrogen-Bonded Organic Framework for Gas Separation. <i>Crystal Growth and Design</i> , 2017 , 17, 6132-6137	3.5	48
224	Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. <i>Applied Optics</i> , 2017 , 56, 9888	1.7	17
223	Construction of ntt-Type Metal®rganic Framework from C2-Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. <i>Crystal Growth and Design</i> , 2017 , 17, 4795-4800	3.5	11
222	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. <i>Chemical Communications</i> , 2017 , 53, 11150-11153	5.8	58
221	Gas Purification: Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials (Adv. Mater. 28/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
220	Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metalorganic framework. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18984-18988	13	68
219	Fine Tuning of MOF-505 Analogues To Reduce Low-Pressure Methane Uptake and Enhance Methane Working Capacity. <i>Angewandte Chemie</i> , 2017 , 129, 11584-11588	3.6	20
218	Fine Tuning of MOF-505 Analogues To Reduce Low-Pressure Methane Uptake and Enhance Methane Working Capacity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11426-11430	16.4	92
217	A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations. <i>Journal of Solid State Chemistry</i> , 2017 , 255, 102-107	3.3	12
216	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. <i>Advanced Materials</i> , 2017 , 29, 1704210	24	213

215	Microporous Lanthanide Metal-Organic Framework Constructed from Lanthanide Metalloligand for Selective Separation of CH/CO and CH/CH at Room Temperature. <i>Inorganic Chemistry</i> , 2017 , 56, 7145-7	150	52
214	Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. <i>Energy and Environmental Science</i> , 2017 , 10, 1812-1819	35.4	73
213	An ultrastable and easily regenerated HOF for the selective storage and separation of light hydrocarbons. <i>Science China Chemistry</i> , 2017 , 60, 683-684	7.9	5
212	Some equivalent two-dimensional weavings at the molecular scale in 2D and 3D metalBrganic frameworks. <i>CrystEngComm</i> , 2016 , 18, 7607-7613	3.3	9
211	Potential of microporous metal®rganic frameworks for separation of hydrocarbon mixtures. Energy and Environmental Science, 2016 , 9, 3612-3641	35.4	428
210	Fine-Tuning Porous Metal-Organic Frameworks for Gas Separations at Will. <i>CheM</i> , 2016 , 1, 669-671	16.2	25
209	A Terbium-Organic Framework Material for Highly Sensitive Sensing of Fe3+ in Aqueous and Biological Systems: Experimental Studies and Theoretical Analysis. <i>ChemistrySelect</i> , 2016 , 1, 3555-3561	1.8	27
208	Emerging Multifunctional Metal-Organic Framework Materials. <i>Advanced Materials</i> , 2016 , 28, 8819-8860	024	955
207	A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature. <i>Science China Chemistry</i> , 2016 , 59, 965-969	7.9	22
206	A two-dimensional metal-organic framework composed of paddle-wheel cobalt clusters with permanent porosity. <i>Inorganic Chemistry Communication</i> , 2016 , 74, 98-101	3.1	9
205	Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal-Organic Frameworks. <i>ACS Applied Materials & Date:</i> Interfaces, 2016 , 8, 32259-32265	9.5	156
204	A highly stable amino-coordinated MOF for unprecedented block off N adsorption and extraordinary CO/N separation. <i>Chemical Communications</i> , 2016 , 52, 13568-13571	5.8	28
203	Doubly Interpenetrated Metal Organic Framework for Highly Selective C2H2/CH4 and C2H2/CO2 Separation at Room Temperature. <i>Crystal Growth and Design</i> , 2016 , 16, 7194-7197	3.5	65
202	Polystyrene Sulfonate Threaded through a Metal®rganic Framework Membrane for Fast and Selective Lithium-Ion Separation. <i>Angewandte Chemie</i> , 2016 , 128, 15344-15348	3.6	40
201	Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. <i>CheM</i> , 2016 , 1, 557-580	16.2	214
200	Polarized three-photon-pumped laser in a single MOF microcrystal. <i>Nature Communications</i> , 2016 , 7, 11087	17.4	129
199	Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15120-15124	16.4	178
198	A Twofold Interpenetrated Metal-Organic Framework with High Performance in Selective Separation of C H /CH. <i>ChemPlusChem</i> , 2016 , 81, 770-774	2.8	28

197	Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. <i>Materials Today</i> , 2016 , 19, 503-515	21.8	63
196	A Three-Dimensional Tetraphenylethene-Based Metal©rganic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4470-4475	2.3	19
195	Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature. <i>Chemical Communications</i> , 2016 , 52, 3494-6	5.8	71
194	Metal-Organic Frameworks as Platforms for Functional Materials. <i>Accounts of Chemical Research</i> , 2016 , 49, 483-93	24.3	1178
193	High acetylene/ethylene separation in a microporous zinc(II) metal-organic framework with low binding energy. <i>Chemical Communications</i> , 2016 , 52, 1166-9	5.8	57
192	Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal-Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. <i>Chemistry - A European Journal</i> , 2016 , 22, 5676-83	4.8	85
191	A Threefold Interpenetrated Pillared-Layer Metal-Organic Framework for Selective Separation of C H /CH and CO /CH. <i>ChemPlusChem</i> , 2016 , 81, 764-769	2.8	17
190	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. <i>Science</i> , 2016 , 353, 141-4	33.3	783
189	A Fluorinated Metal®rganic Framework for High Methane Storage at Room Temperature. <i>Crystal Growth and Design</i> , 2016 , 16, 3395-3399	3.5	28
188	Finely tuning MOFs towards high performance in C2H2 storage: synthesis and properties of a new MOF-505 analogue with an inserted amide functional group. <i>Chemical Communications</i> , 2016 , 52, 7241-4	₁ 5.8	110
187	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5678-84	16.4	351
186	A Microporous Metal-Organic Framework with Lewis Basic Nitrogen Sites for High C2H2 Storage and Significantly Enhanced C2H2/CO2 Separation at Ambient Conditions. <i>Inorganic Chemistry</i> , 2016 , 55, 7214-8	5.1	100
185	Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction. <i>Crystal Growth and Design</i> , 2016 , 16, 5831-5835	3.5	77
184	Incorporation of N-Methyl-d-glucamine Functionalized Oligomer into MIL-101(Cr) for Highly Efficient Removal of Boric Acid from Water. <i>Chemistry - A European Journal</i> , 2016 , 22, 15290-15297	4.8	14
183	A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers. <i>Chemistry - A European Journal</i> , 2016 , 22, 14988-14997	4.8	46
182	Lanthanide Metal-Organic Frameworks for Luminescent Applications. <i>Fundamental Theories of Physics</i> , 2016 , 50, 243-268	0.8	18
181	A Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Gas Separation. <i>Crystal Growth and Design</i> , 2015 , 15, 2000-2004	3.5	80
180	Metal-organic frameworks for luminescence thermometry. <i>Chemical Communications</i> , 2015 , 51, 7420-31	5.8	288

179	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9963-70	16.4	254
178	Porous metal@rganic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. <i>Energy and Environmental Science</i> , 2015 , 8, 2504-2511	35.4	107
177	A Noninterpenetrated Metal®rganic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. <i>Crystal Growth and Design</i> , 2015 , 15, 4071-4074	3.5	20
176	A metal-organic framework with immobilized Ag(i) for highly efficient desulfurization of liquid fuels. <i>Chemical Communications</i> , 2015 , 51, 12205-7	5.8	47
175	Recent developments in metal-metalloporphyrin frameworks. <i>Dalton Transactions</i> , 2015 , 44, 14574-83	4.3	44
174	Novel microporous metal-organic framework exhibiting high acetylene and methane storage capacities. <i>Inorganic Chemistry</i> , 2015 , 54, 4377-81	5.1	30
173	A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10747-	10752	67
172	Multifunctional lanthanide coordination polymers. <i>Progress in Polymer Science</i> , 2015 , 48, 40-84	29.6	151
171	Two-photon responsive metal-organic framework. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4026-9	16.4	159
170	Solvent Dependent Structures of Melamine: Porous or Nonporous?. <i>Crystal Growth and Design</i> , 2015 , 15, 1871-1875	3.5	27
169	A Flexible Metal Drganic Framework: Guest Molecules Controlled Dynamic Gas Adsorption. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9442-9449	3.8	53
168	A porous Zr-cluster-based cationic metal-organic framework for highly efficient Cr2O7(2-) removal from water. <i>Chemical Communications</i> , 2015 , 51, 14732-4	5.8	196
167	A new NbO type metal®rganic framework for high acetylene and methane storage. <i>RSC Advances</i> , 2015 , 5, 84446-84450	3.7	12
166	A microporous metal-organic framework with polarized trifluoromethyl groups for high methane storage. <i>Chemical Communications</i> , 2015 , 51, 14789-92	5.8	35
165	An amino-decorated NbO-type metalBrganic framework for high C2H2 storage and selective CO2 capture. <i>RSC Advances</i> , 2015 , 5, 77417-77422	3.7	44
164	Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Emp; Interfaces</i> , 2015 , 7, 20999-1004	4 ^{9.5}	148
163	A three-dimensional microporous metal-metalloporphyrin framework. <i>Inorganic Chemistry</i> , 2015 , 54, 200-4	5.1	37
162	A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2015 , 51, 376-9	5.8	90

161	A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. <i>Chinese Chemical Letters</i> , 2015 , 26, 6-10	8.1	43
160	A metalBrganic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 42-46	6.8	23
159	Cr 2 O 3 @TiO 2 yolk/shell octahedrons derived from a metalBrganic framework for high-performance lithium-ion batteries. <i>Microporous and Mesoporous Materials</i> , 2015 , 203, 86-90	5.3	29
158	A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 574-7	16.4	137
157	Syntheses and Crystal Structures of Three Metal-Organic Frameworks Constructed from a C3-Symmetrical Tricarboxylic Acid. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2015 , 641, 1571	-1574	
156	Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. <i>Nature Communications</i> , 2015 , 6, 7328	17.4	326
155	Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature. <i>Chemical Communications</i> , 2015 , 51, 2859-62	5.8	136
154	A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2H2/CO2 at Room Temperature. <i>Angewandte Chemie</i> , 2015 , 127, 584-587	3.6	92
153	A microporous metal-organic framework with rare lvt topology for highly selective C2H2/C2H4 separation at room temperature. <i>Chemical Communications</i> , 2015 , 51, 5610-3	5.8	54
152	Dual-emitting MOF?dye composite for ratiometric temperature sensing. <i>Advanced Materials</i> , 2015 , 27, 1420-5	24	501
151	Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. <i>Coordination Chemistry Reviews</i> , 2014 , 273-274, 76-86	23.2	800
150	A Microporous Metal®rganic Framework Constructed from a New Tetracarboxylic Acid for Selective Gas Separation. <i>Crystal Growth and Design</i> , 2014 , 14, 2522-2526	3.5	49
149	A stable microporous mixed-metal metal-organic framework with highly active Cu2+ sites for efficient cross-dehydrogenative coupling reactions. <i>Chemistry - A European Journal</i> , 2014 , 20, 1447-52	4.8	49
148	A highly porous NbO type metal-organic framework constructed from an expanded tetracarboxylate. <i>Chemical Communications</i> , 2014 , 50, 1552-4	5.8	42
147	A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols. <i>Journal of the American Chemical Society</i> , 2014 , 136, 547-9	16.4	233
146	A new metal B rganic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2628	13	74
145	A two dimensional microporous metal-organic framework for selective gas separation. <i>Inorganic Chemistry Communication</i> , 2014 , 50, 106-109	3.1	8
144	A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room temperature. <i>APL Materials</i> , 2014 , 2, 124102	5.7	27

143	Highly dispersed ENiS nanoparticles in porous carbon matrices by a template metal®rganic framework method for lithium-ion cathode. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7912	13	80
142	A new tetrazolate zeolite-like framework for highly selective CO2/CH4 and CO2/N2 separation. <i>Chemical Communications</i> , 2014 , 50, 12101-4	5.8	73
141	A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6. <i>Chemical Communications</i> , 2014 , 50, 13081-4	5.8	105
140	A NbO type microporous metalorganic framework constructed from a naphthalene derived ligand for CH4 and C2H2 storage at room temperature. <i>RSC Advances</i> , 2014 , 4, 49457-49461	3.7	23
139	Enhanced CO2 sorption and selectivity by functionalization of a NbO-type metal-organic framework with polarized benzothiadiazole moieties. <i>Chemical Communications</i> , 2014 , 50, 12105-8	5.8	86
138	Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units. <i>Chemical Society Reviews</i> , 2014 , 43, 5618-56	58.5	431
137	Porous anatase TiO2 constructed from a metal o rganic framework for advanced lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12571	13	128
136	Perspective of microporous metal®rganic frameworks for CO2 capture and separation. <i>Energy and Environmental Science</i> , 2014 , 7, 2868	35.4	616
135	Methane storage in metal-organic frameworks. <i>Chemical Society Reviews</i> , 2014 , 43, 5657-78	58.5	1246
134	A porous metalBrganic framework with an elongated anthracene derivative exhibiting a high working capacity for the storage of methane. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11516	13	40
133	Highly selective separation of small hydrocarbons and carbon dioxide in a metalBrganic framework with open copper(II) coordination sites. <i>RSC Advances</i> , 2014 , 4, 23058	3.7	31
132	A porous metal-organic framework with -COOH groups for highly efficient pollutant removal. <i>Chemical Communications</i> , 2014 , 50, 14455-8	5.8	131
131	A copper-based metalorganic framework constructed from a new tetracarboxylic acid for selective gas separation. <i>Inorganic Chemistry Communication</i> , 2014 , 49, 34-36	3.1	10
130	Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why?. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3468-79	6.4	403
129	Highly selective sieving of small gas molecules by using an ultra-microporous metal b rganic framework membrane. <i>Energy and Environmental Science</i> , 2014 , 7, 4053-4060	35.4	115
128	Solvent Dependent Structures of Hydrogen-Bonded Organic Frameworks of 2,6-Diaminopurine. <i>Crystal Growth and Design</i> , 2014 , 14, 3634-3638	3.5	17
127	A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6207-10	16.4	278
126	A new microporous metalorganic framework with open metal sites and exposed carboxylic acid groups for selective separation of CO2/CH4 and C2H2/CH4. <i>RSC Advances</i> , 2014 , 4, 36419	3.7	34

125	Two structurally different praseodymium-organic frameworks with permanent porosity. <i>Inorganic Chemistry Communication</i> , 2014 , 45, 89-92	3.1	О
124	Microporous metal-organic frameworks for gas separation. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 1474-9	8 4.5	157
123	Porous Lanthanide Metal®rganic Frameworks for Gas Storage and Separation. <i>Structure and Bonding</i> , 2014 , 75-107	0.9	13
122	Metal©rganic Frameworks: Frameworks Containing Open Sites 2014 , 1-23		1
121	A series of metalorganic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. <i>Energy and Environmental Science</i> , 2013 , 6, 2735	35.4	177
120	A Metal©rganic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and LithiumBulfur Battery of Long Cycling Life. <i>Crystal Growth and Design</i> , 2013 , 13, 5116-5120	3.5	102
119	A mesoporous lanthanideBrganic framework constructed from a dendritic hexacarboxylate with cages of 2.4 nm. <i>CrystEngComm</i> , 2013 , 15, 9328	3.3	33
118	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. <i>Nature Communications</i> , 2013 , 4, 2719	17.4	327
117	Enantioselective ring-opening of meso-epoxides by aromatic amines catalyzed by a homochiral metal-organic framework. <i>Chemical Communications</i> , 2013 , 49, 9836-8	5.8	52
116	A cationic microporous metalBrganic framework for highly selective separation of small hydrocarbons at room temperature. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9916	13	75
115	Highly efficient C-H oxidative activation by a porous Mn(III) -porphyrin metal-organic framework under mild conditions. <i>Chemistry - A European Journal</i> , 2013 , 19, 14316-21	4.8	88
114	Metastable interwoven mesoporous metal-organic frameworks. <i>Inorganic Chemistry</i> , 2013 , 52, 11580-4	5.1	59
113	A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. <i>Journal of the American Chemical Society</i> , 2013 , 135, 15559-64	16.4	536
112	Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO2-CH4-H2 separation. <i>Chemical Communications</i> , 2013 , 49, 6773-5	5.8	61
111	A microporous metal B rganic framework assembled from an aromatic tetracarboxylate for H2 purification. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2543	13	59
110	A microporous metalBrganic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 77-81	13	131
109	Luminescent Properties and Applications of Metal-Organic Frameworks. <i>Structure and Bonding</i> , 2013 , 27-88	0.9	16
108	A photoluminescent microporous metal organic anionic framework for nitroaromatic explosive sensing. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4525	13	113

107	A microporous metal-organic framework of a rare sty topology for high CH4 storage at room temperature. <i>Chemical Communications</i> , 2013 , 49, 2043-5	5.8	58
106	A Doubly Interpenetrated Metal®rganic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. <i>Crystal Growth and Design</i> , 2013 , 13, 2094-2097	3.5	77
105	Metal Drganic Framework with Functional Amide Groups for Highly Selective Gas Separation. <i>Crystal Growth and Design</i> , 2013 , 13, 2670-2674	3.5	61
104	A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. <i>Chemical Communications</i> , 2013 , 49, 6719-21	5.8	142
103	A microporous metal®rganic framework with Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature. <i>CrystEngComm</i> , 2013 , 15, 5232	3.3	22
102	Metal-organic frameworks capable of healing at low temperatures. <i>Advanced Materials</i> , 2013 , 25, 6106	·1214	7
101	Metal©rganic Frameworks: Metal©rganic Frameworks Capable of Healing at Low Temperatures (Adv. Mater. 42/2013). <i>Advanced Materials</i> , 2013 , 25, 6148-6148	24	
100	Expanded organic building units for the construction of highly porous metal-organic frameworks. <i>Chemistry - A European Journal</i> , 2013 , 19, 14886-94	4.8	60
99	Modeling adsorption equilibria of xylene isomers in a microporous metalorganic framework. <i>Microporous and Mesoporous Materials</i> , 2012 , 155, 220-226	5.3	21
98	A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. <i>Chemistry - A European Journal</i> , 2012 , 18, 613-9	4.8	188
97	High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature. <i>Chemistry - A European Journal</i> , 2012 , 18, 1901-4	4.8	127
96	A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection. <i>Chemical Communications</i> , 2012 , 48, 7377-9	5.8	133
95	A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. <i>Chemical Communications</i> , 2012 , 48, 6493-5	5.8	187
94	A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. <i>Chemical Communications</i> , 2012 , 48, 10856-8	5.8	120
93	Multi-component synthesis of 2-amino-6-(alkyllthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal-organic frameworks (MOFs) under solvent-free conditions. <i>Tetrahedron Letters</i> , 2012 , 53, 4870-4872	2	42
92	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. <i>Nature Communications</i> , 2012 , 3, 954	17.4	615
91	Three novel isomeric zinc metal-organic frameworks from a tetracarboxylate linker. <i>Inorganic Chemistry</i> , 2012 , 51, 7066-74	5.1	35
90	A luminescent mixed-lanthanide metal-organic framework thermometer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3979-82	16.4	896

89	Microporous metal-organic frameworks for storage and separation of small hydrocarbons. <i>Chemical Communications</i> , 2012 , 48, 11813-31	5.8	278
88	Origin of long-range ferromagnetic ordering in metal-organic frameworks with antiferromagnetic dimeric-Cu(II) building units. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17286-90	16.4	72
87	Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metal®rganic framework materials. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3210		190
86	Triple framework interpenetration and immobilization of open metal sites within a microporous mixed metal-organic framework for highly selective gas adsorption. <i>Inorganic Chemistry</i> , 2012 , 51, 4947	-53	74
85	MetalBrganic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. <i>Energy and Environmental Science</i> , 2012 , 5, 9107	35.4	517
84	Luminescent functional metal-organic frameworks. <i>Chemical Reviews</i> , 2012 , 112, 1126-62	68.1	4620
83	Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (MOMOFs) for their highly selective separation of chiral and achiral small molecules. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8703-10	16.4	296
82	A robust microporous metalBrganic framework constructed from a flexible organic linker for acetylene storage at ambient temperature. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10195		52
81	A robust microporous metalorganic framework constructed from a flexible organic linker for highly selective sorption of methanol over ethanol and water. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10352		18
80	Second-Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metal Drganic Framework. <i>Angewandte Chemie</i> , 2012 , 124, 10694-10697	3.6	47
79	Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1054	1 <u>2</u> 54	255
78	Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 10638-45	16.4	244
77	A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. <i>Chemical Communications</i> , 2011 , 47, 11715-7	5.8	289
76	Microporous metalBrganic frameworks for acetylene storage and separation. <i>CrystEngComm</i> , 2011 , 13, 5983	3.3	146
75	Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. <i>Nature Communications</i> , 2011 , 2, 204	17.4	438
74	Three-dimensional pillar-layered copper(II) metal-organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. <i>Inorganic Chemistry</i> , 2011 , 50, 3442-6	5.1	111
73	A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14570-3	16.4	409
72	A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chemical Communications, 2011 , 47, 3153-5	5.8	401

71	A new approach to construct a doubly interpenetrated microporous metal-organic framework of primitive cubic net for highly selective sorption of small hydrocarbon molecules. <i>Chemistry - A European Journal</i> , 2011 , 17, 7817-22	4.8	127
70	Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. <i>Tetrahedron Letters</i> , 2011 , 52, 6220-6222	2	63
69	Significantly Enhanced CO2/CH4 Separation Selectivity within a 3D Prototype Metal Drganic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 2227-2231	2.3	52
68	A Metal®rganic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. <i>Angewandte Chemie</i> , 2011 , 123, 3236-3239	3.6	36
67	Funktionelle Gemischtmetall-organische Ger\(\text{S}\)te mit Metalloliganden. <i>Angewandte Chemie</i> , 2011 , 123, 10696-10707	3.6	71
66	A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3178-81	16.4	321
65	Functional mixed metal-organic frameworks with metalloligands. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10510-20	16.4	351
64	A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2011 , 47, 5551-3	5.8	321
63	A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. <i>Chemical Communications</i> , 2010 , 46, 7205-7	5.8	226
62	Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. <i>Crystal Growth and Design</i> , 2010 , 10, 5291-5296	3.5	40
61	A robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules. <i>Inorganic Chemistry</i> , 2010 , 49, 8444-8	5.1	93
60	A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metal@rganic Frameworks of Diverse Structures and Porosities. <i>Crystal Growth and Design</i> , 2010 , 10, 2775-2779	3.5	47
59	A Rare Uninodal 9-Connected Metal Drganic Framework with Permanent Porosity. <i>Crystal Growth and Design</i> , 2010 , 10, 2372-2375	3.5	70
58	A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu(2+) in aqueous solution. <i>Chemical Communications</i> , 2010 , 46, 5503-5	5.8	351
57	Selective gas adsorption within a five-connected porous metalBrganic framework. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3984		58
56	Metal-organic frameworks with functional pores for recognition of small molecules. <i>Accounts of Chemical Research</i> , 2010 , 43, 1115-24	24.3	1797
55	A Microporous Metal®rganic Framework with Immobilized ®H Functional Groups within the Pore Surfaces for Selective Gas Sorption. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 3745-3749	2.3	92
54	Open Metal Sites within Isostructural Metal Drganic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature. <i>Angewandte Chemie</i> , 2010 , 122, 4719-4722	3.6	61

(2007-2010)

53	Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4615-8	16.4	304
52	A Luminescent Metal©rganic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal lons. <i>Angewandte Chemie</i> , 2009 , 121, 508-511	3.6	155
51	A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 500-3	16.4	980
50	Reversible Two-Dimensional Three Dimensional Framework Transformation within a Prototype Metal Drganic Framework. <i>Crystal Growth and Design</i> , 2009 , 9, 5293-5296	3.5	91
49	Molecular sensing with lanthanide luminescence in a 3D porous metal-organic framework. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 601-604	5.7	75
48	New prototype isoreticular metal-organic framework Zn(4)O(FMA)(3) for gas storage. <i>Inorganic Chemistry</i> , 2009 , 48, 4649-51	5.1	66
47	A new MOF-505 analog exhibiting high acetylene storage. <i>Chemical Communications</i> , 2009 , 7551-3	5.8	217
46	Single- and Multicomponent Vapor-Phase Adsorption of Xylene Isomers and Ethylbenzene in a Microporous Metal (Drganic Framework. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13173-13179	3.8	81
45	Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12415-9	16.4	432
44	A luminescent microporous metal-organic framework for the recognition and sensing of anions. Journal of the American Chemical Society, 2008, 130, 6718-9	16.4	918
43	Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6411-23	16.4	408
42	A Microporous Metal©rganic Framework for Separation of CO2/N2and CO2/CH4by Fixed-Bed Adsorption. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1575-1581	3.8	398
41	Metal-organic framework with rationally tuned micropores for selective adsorption of water over methanol. <i>Inorganic Chemistry</i> , 2008 , 47, 5543-5	5.1	86
40	Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework. <i>Separation Science and Technology</i> , 2008 , 43, 3494-3521	2.5	51
39	Robust metal-organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. <i>Inorganic Chemistry</i> , 2008 , 47, 6825-8	5.1	138
38	A nanoporous Ag-Fe mixed-metal-organic framework exhibiting single-crystal-to-single-crystal transformations upon guest exchange. <i>Inorganic Chemistry</i> , 2008 , 47, 4433-5	5.1	89
37	Selective gas sorption within a dynamic metal-organic framework. <i>Inorganic Chemistry</i> , 2007 , 46, 8705-9	5.1	118
36	A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules. <i>Inorganic Chemistry</i> , 2007 , 46, 8490-2	5.1	221

35	Luminescent Open Metal Sites within a Metal Organic Framework for Sensing Small Molecules. <i>Advanced Materials</i> , 2007 , 19, 1693-1696	24	846
34	Poly[(🛘-trans-di-4-pyridylethylene-ևN:N?)(և-fumarato-ևO:O?)zinc(II)]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m2205-m2205		4
33	Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 6101-3	3.4	162
32	Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. <i>Inorganic Chemistry</i> , 2007 , 46, 1233-6	5.1	458
31	A microporous metal-organic framework for gas-chromatographic separation of alkanes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1390-3	16.4	1060
3 0	A Microporous MetalDrganic Framework for Gas-Chromatographic Separation of Alkanes. <i>Angewandte Chemie</i> , 2006 , 118, 1418-1421	3.6	202
29	Po Nets of Copper(II)-trans-1,4-Cyclohexanedicarboxylate Frameworks Based on a Paddle-Wheel Building Block and Its Enlarged Dimer. <i>Crystal Growth and Design</i> , 2006 , 6, 825-828	3.5	67
28	Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. <i>Inorganic Chemistry</i> , 2006 , 45, 5718-20	5.1	191
27	Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework. <i>Inorganic Chemistry</i> , 2006 , 45, 8882-6	5.1	226
26	Poly[bis(🏿-trans-di-4-pyridylethylene-ឋN:N?)bis(nitrato-🗘O,O?)bis(🗗-succinato-🗘O:O?:O??:O???)(🖺-succinato-Colors) Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m382-m384	ato-BO	:0:0?:0?)
25			
	Poly[diaquabis(🛚-4,4?-bipyridine)bis(B-5,5?-dicarboxybiphenyl-2,2?-dicarboxylato)dicobalt(II) tetrahydrate]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m1906-m1908		
24		5.1	153
24	tetrahydrate]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m1906-m1908 Transformation of a metal-organic framework from the NbO to PtS net. <i>Inorganic Chemistry</i> , 2005 ,	5.1	
	tetrahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1906-m1908 Transformation of a metal-organic framework from the NbO to PtS net. Inorganic Chemistry, 2005, 44, 181-3 Rod packings and metal-organic frameworks constructed from rod-shaped secondary building		
23	tetrahydrate]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m1906-m1908 Transformation of a metal-organic framework from the NbO to PtS net. <i>Inorganic Chemistry</i> , 2005 , 44, 181-3 Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1504-18 High H2 adsorption in a microporous metal-organic framework with open metal sites. <i>Angewandte</i>	16.4	1963
23	tetrahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1906-m1908 Transformation of a metal-organic framework from the NbO to PtS net. Inorganic Chemistry, 2005, 44, 181-3 Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127, 1504-18 High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie - International Edition, 2005, 44, 4745-9 High H2 Adsorption in a Microporous Metal Drganic Framework with Open Metal Sites.	16.4	1963 959
23 22 21	tetrahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1906-m1908 Transformation of a metal-organic framework from the NbO to PtS net. Inorganic Chemistry, 2005, 44, 181-3 Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127, 1504-18 High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie - International Edition, 2005, 44, 4745-9 High H2 Adsorption in a Microporous Metal©rganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 3-(4-cyanophenyl)pentane-2,4-dione and its copper(II) complex. Acta Crystallographica Section C:	16.4	1963 959 208

LIST OF PUBLICATIONS

17	Crystal Structures of (Pyrene)10(I3-)4(I2)10 and [1,3,6,8-Tetrakis(methylthio)pyrene]3(I3-)3(I2)7: Structural Trends in Fused Aromatic Polyiodides. <i>Chemistry of Materials</i> , 2003 , 15, 1420-1433	9.6	23
16	Solvent-dependent 4(4) square grid and 6(4).8(2) NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)). <i>Chemical Communications</i> , 2003 , 2166-7	5.8	148
15	Packing Principles of Thioether Derivatives of Triarylamine Silver Salts. <i>Crystal Growth and Design</i> , 2002 , 2, 101-105	3.5	11
14	Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. <i>Accounts of Chemical Research</i> , 2001 , 34, 319-30	24.3	4600
13	Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. <i>Science</i> , 2001 , 291, 1021-3	33.3	1089
12	Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8239-47	16.4	734
11	Cu2(ATC)[6H2O: Design of Open Metal Sites in Porous Metal[Organic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate). <i>Journal of the American Chemical Society</i> , 2000 , 122, 11559-115	60 ^{6.4}	391
10	Syntheses, structures and properties of copper(II) complexes with thiophene-2,5-dicarboxylic acid (H2Tda) and nitrogen-containing ligands. <i>Polyhedron</i> , 1999 , 18, 1211-1220	2.7	42
9	Thiophene-2,5-dicarboxylic acid incorporated self-assembly of one-, two- and three-dimensional coordination polymers. <i>New Journal of Chemistry</i> , 1999 , 23, 877-883	3.6	52
8	Synthesis, characterization and crystal structures of three diverse copper (II) complexes with thiophene-2,5-dicarboxylic acid and 1,10-phenanthroline. <i>Polyhedron</i> , 1998 , 17, 4237-4247	2.7	42
7	Structural diversity in silver(I) and gold(I) complexes with 2,5-bis(diphenylphosphinomethyl)thiophene. <i>Journal of the Chemical Society Dalton Transactions</i> , 1998 , 4035-4042		17
6	Synthesis, crystal structures and dynamic NMR studies of novel trinuclear copper(I) halide complexes with 2,5-bis[(diphenylphosphino)methyl]thiophene. <i>Journal of the Chemical Society Dalton Transactions</i> , 1998 , 2861-2866		12
5	The Molecular Structure of a Schiff Base Complex, [N,N?-Ethylenebis(1-phenyl-2-imino-1-butanonato)](acetonitrile)manganese(III) Perchlorate. <i>Bulletin of the Chemical Society of Japan</i> , 1989 , 62, 2384-2386	5.1	7
4	Efficient Separation of Propylene from Propane in an Ultramicroporous Cyanide-Based Compound with Open Metal Sites. <i>Small Structures</i> ,2100125	8.7	6
3	A Solid Transformation into Carboxyl Dimers Based on a Robust Hydrogen-Bonded Organic Framework for Propyne/Propylene Separation. <i>Angewandte Chemie</i> ,	3.6	2
2	An ultramicroporous metal-organic framework with record high selectivity for inverse CO2/C2H2 separation. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	2
1	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2201502	24	12