Tayfun E Tezduyar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1776454/tayfun-e-tezduyar-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 329
 20,461
 82
 129

 papers
 citations
 h-index
 g-index

 356
 22,130
 3.6
 7.26

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
329	Wind turbine wake computation with the ST-VMS method and isogeometric discretization: Directional preference in spatial refinement. <i>Computational Mechanics</i> , 2022 , 69, 1031	4	2
328	Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. <i>Journal of Mechanics</i> , 2022 , 38, 77-87	1	3
327	SpaceIIime Flow Computation withIContact Between theIMoving Solid Surfaces 2022 , 517-525		2
326	SpaceTime Computational FSI and Flow Analysis: 2004 and Beyond 2022, 537-544		2
325	Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. <i>Journal of Mechanics</i> , 2022 , 38, 185-194	1	2
324	Spacelime VMS isogeometric analysis of the Taylorlouette flow. <i>Computational Mechanics</i> , 2021 , 67, 1515-1541	4	5
323	Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. <i>Computational Mechanics</i> , 2021 , 68, 175-184	4	4
322	Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. <i>Computational Mechanics</i> , 2021 , 68, 113-130	4	5
321	Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method. <i>Computational Mechanics</i> , 2021 , 67, 57-84	4	18
320	A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. <i>Computational Mechanics</i> , 2021 , 67, 413-434	4	7
319	U-duct turbulent-flow computation with the ST-VMS method and isogeometric discretization. <i>Computational Mechanics</i> , 2021 , 67, 823-843	4	5
318	Element-splitting-invariant local-length-scale calculation in B-Spline meshes for complex geometries. <i>Mathematical Models and Methods in Applied Sciences</i> , 2020 , 30, 2139-2174	3.5	10
317	A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. <i>Computational Mechanics</i> , 2020 , 65, 1567-1591	4	15
316	Computational analysis of particle-laden-airflow erosion and experimental verification. <i>Computational Mechanics</i> , 2020 , 65, 1549-1565	4	10
315	Ventricle-valve-aorta flow analysis with the Spacellime Isogeometric Discretization and Topology Change. <i>Computational Mechanics</i> , 2020 , 65, 1343-1363	4	29
314	Heart valve isogeometric sequentially-coupled FSI analysis with the spacelime topology change method. <i>Computational Mechanics</i> , 2020 , 65, 1167-1187	4	31
313	Wind Turbine and Turbomachinery Computational Analysis with the ALE and Space-Time Variational Multiscale Methods and Isogeometric Discretization 2020 , 4, 1		14

312	Computational Flow Analysis in Aerospace, Energy and Transportation Technologies with the Variational Multiscale Methods 2020 , 4, 83		14	
311	Computational Cardiovascular Analysis with the Variational Multiscale Methods and Isogeometric Discretization. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2020 , 151-193	0.8	9	
310	ALE and SpaceTime Variational Multiscale Isogeometric Analysis of Wind Turbines and Turbomachinery. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2020 , 195-233	0.8	8	
309	Variational Multiscale Flow Analysis in Aerospace, Energy and Transportation Technologies. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2020 , 235-280	0.8	8	
308	Anatomically realistic lumen motion representation in patient-specific spacelime isogeometric flow analysis of coronary arteries with time-dependent medical-image data 2020 , 65, 395		1	
307	Element length calculation in B-spline meshes for complex geometries 2020 , 65, 1085		1	
306	Element length calculation in B-spline meshes for complex geometries. <i>Computational Mechanics</i> , 2020 , 65, 1085-1103	4	20	
305	SpaceII ime Variational Multiscale Isogeometric Analysis of a tsunami-shelter vertical-axis wind turbine. <i>Computational Mechanics</i> , 2020 , 66, 1443-1460	4	14	
304	Anatomically realistic lumen motion representation in patient-specific spacelime isogeometric flow analysis of coronary arteries with time-dependent medical-image data. <i>Computational Mechanics</i> , 2020 , 65, 395-404	4	26	
303	Space li me VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. <i>Computational Mechanics</i> , 2019 , 64, 1403-1419	4	31	
302	Computational analysis methods for complex unsteady flow problems. <i>Mathematical Models and Methods in Applied Sciences</i> , 2019 , 29, 825-838	3.5	16	
301	A stabilized ALE method for computational fluid Itructure interaction analysis of passive morphing in turbomachinery. <i>Mathematical Models and Methods in Applied Sciences</i> , 2019 , 29, 967-994	3.5	27	
300	Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion. <i>Computational Mechanics</i> , 2019 , 64, 1133-1153	4	32	
299	Methods for computation of flow-driven string dynamics in a pump and residence time. <i>Mathematical Models and Methods in Applied Sciences</i> , 2019 , 29, 839-870	3.5	33	
298	SpaceEime Isogeometric flow analysis with built-in Reynolds-equation limit. <i>Mathematical Models and Methods in Applied Sciences</i> , 2019 , 29, 871-904	3.5	29	
297	Medical-image-based aorta modeling with zero-stress-state estimation. <i>Computational Mechanics</i> , 2019 , 64, 249-271	4	23	
296	Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. <i>Computers and Fluids</i> , 2019 , 179, 790-798	2.8	39	
295	Turbocharger turbine and exhaust manifold flow computation with the Spacellime Variational Multiscale Method and Isogeometric Analysis. <i>Computers and Fluids</i> , 2019 , 179, 764-776	2.8	43	

294	Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping. <i>Computational Mechanics</i> , 2019 , 63, 681-700	4	29
293	Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. <i>Computational Mechanics</i> , 2019 , 63, 301-321	4	44
292	Space li me computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. <i>Computational Mechanics</i> , 2019 , 64, 1699-1718	4	26
291	A node-numbering-invariant directional length scale for simplex elements. <i>Mathematical Models and Methods in Applied Sciences</i> , 2019 , 29, 2719-2753	3.5	18
290	Computational Cardiovascular Flow Analysis with the Variational Multiscale Methods 2019 , 3, 366		21
289	Aorta zero-stress state modeling with T-spline discretization. Computational Mechanics, 2019, 63, 1315	-1 ₄ 331	17
288	Tire aerodynamics with actual tire geometry, road contact and tire deformation. <i>Computational Mechanics</i> , 2019 , 63, 1165-1185	4	43
287	Spacelime computations in practical engineering applications: a summary of the 25-year history. <i>Computational Mechanics</i> , 2019 , 63, 747-753	4	31
286	Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis. <i>Archives of Computational Methods in Engineering</i> , 2019 , 26, 1059-1099	7.8	32
285	Stabilization and discontinuity-capturing parameters for spacelime flow computations with finite element and isogeometric discretizations. <i>Computational Mechanics</i> , 2018 , 62, 1169-1186	4	50
284	Comment on Experimental investigation of Taylor vortex photocatalytic reactor for water purification [In the control of the co	4.4	1
283	Heart Valve Flow Computation with the SpaceTime Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA). <i>Lecture Notes in Applied and Computational Mechanics</i> , 2018 , 77-99	0.3	36
282	Estimation of Element-Based Zero-Stress State in Arterial FSI Computations with Isogeometric Wall Discretization. <i>Lecture Notes in Applied and Computational Mechanics</i> , 2018 , 101-122	0.3	22
281	A General-Purpose NURBS Mesh Generation Method for Complex Geometries. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2018 , 399-434	0.8	42
280	Aorta Flow Analysis and Heart Valve Flow and Structure Analysis. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2018 , 29-89	0.8	37
279	Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2018 , 253-336	0.8	32
278	SpaceTime Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2018 , 337-376	0.8	31
277	Turbocharger flow computations with the Spacellime Isogeometric Analysis (ST-IGA). <i>Computers and Fluids</i> , 2017 , 142, 15-20	2.8	80

(2015-2017)

276	Computational analysis of flow-driven string dynamics in turbomachinery. <i>Computers and Fluids</i> , 2017 , 142, 109-117	2.8	53
275	Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. <i>Mathematical Models and Methods in Applied Sciences</i> , 2017 , 27, 771-806	3.5	57
274	Spacelime VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. <i>Computers and Fluids</i> , 2017 , 158, 189-200	2.8	57
273	FluidBtructure Interaction and Flows with Moving Boundaries and Interfaces 2017, 1-53		3
272	Aorta modeling with the element-based zero-stress state and isogeometric discretization. <i>Computational Mechanics</i> , 2017 , 59, 265-280	4	24
271	Heart valve flow computation with the integrated SpaceTime VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. <i>Computers and Fluids</i> , 2017 , 158, 176-188	2.8	69
270	Computational analysis of wind-turbine blade rain erosion. <i>Computers and Fluids</i> , 2016 , 141, 175-183	2.8	51
269	Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and Discontinuity-Capturing Directional Dissipation. <i>Computers and Fluids</i> , 2016 , 141, 184-190	2.8	17
268	SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2016 , 77-96	0.8	12
267	Ram-air parachute structural and fluid mechanics computations with the SpaceIIime Isogeometric Analysis (ST-IGA). <i>Computers and Fluids</i> , 2016 , 141, 191-200	2.8	69
266	Computational thermo-fluid analysis of a disk brake. Computational Mechanics, 2016, 57, 965-977	4	66
265	Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2016 , 39-53	0.8	2
264	1E33 Zero-Stress State Estimation of Aortic Wall with NURBS Representation. <i>The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME</i> , 2016 , 2016.28, _1E33-11E33-3_	0	
263	SpaceII ime method for flow computations with slip interfaces and topology changes (ST-SI-TC). <i>Computers and Fluids</i> , 2016 , 141, 124-134	2.8	61
262	New Directions in SpaceTime Computational Methods. <i>Modeling and Simulation in Science, Engineering and Technology</i> , 2016 , 159-178	0.8	31
261	A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta. <i>Modeling and Simulation in Science, Engineering and Technology,</i> 2016 , 379-386	0.8	30
260	Particle tracking and particle hock interaction in compressible-flow computations with the V-SGS stabilization and (YZbeta) shock-capturing. <i>Computational Mechanics</i> , 2015 , 55, 1201-1209	4	51
259	Space E ime VMS method for flow computations with slip interfaces (ST-SI). <i>Mathematical Models and Methods in Applied Sciences</i> , 2015 , 25, 2377-2406	3.5	86

258	New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. <i>Mathematical Models and Methods in Applied Sciences</i> , 2015 , 25, 2217-2226	3.5	63
257	Special methods for aerodynamic-moment calculations from parachute FSI modeling. <i>Computational Mechanics</i> , 2015 , 55, 1059-1069	4	60
256	Multiscale spacelime methods for thermo-fluid analysis of a ground vehicle and its tires. <i>Mathematical Models and Methods in Applied Sciences</i> , 2015 , 25, 2227-2255	3.5	93
255	FSI modeling of the Orion spacecraft drogue parachutes. <i>Computational Mechanics</i> , 2015 , 55, 1167-1179	94	64
254	Spacelime computational analysis of MAV flapping-wing aerodynamics with wing clapping. <i>Computational Mechanics</i> , 2015 , 55, 1131-1141	4	88
253	2A15 Relations among morphology, wall stress and pathology in the thoracic aorta. <i>The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME</i> , 2015 , 2015.27, 309	Ο	
252	2A23 Arterial Wall Modeling and Medical Image Mapping Based on Element-Based Zero-Stress State Estimation Method. <i>The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME</i> , 2015 , 2015.27, 315-316	О	
251	J0210104 Arterial Wall Modeling with Time-Dependent Medical Images. <i>The Proceedings of Mechanical Engineering Congress Japan</i> , 2015 , 2015, _J0210104J0210104-	Ο	
250	Sequentially-coupled spacelime FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. <i>Computational Mechanics</i> , 2014 , 54, 213-233	4	95
249	Estimation of element-based zero-stress state for arterial FSI computations. <i>Computational Mechanics</i> , 2014 , 54, 895-910	4	40
248	Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Methods. <i>Computational Methods in Applied Sciences (Springer)</i> , 2014 , 71-102	0.4	6
247	Engineering Analysis and Design with ALE-VMS and Spacellime Methods. <i>Archives of Computational Methods in Engineering</i> , 2014 , 21, 481-508	7.8	95
246	Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods. <i>Archives of Computational Methods in Engineering</i> , 2014 , 21, 359-398	7.8	89
245	FluidBtructure Interaction Modeling of Patient-Specific Cerebral Aneurysms. <i>Lecture Notes in Computational Vision and Biomechanics</i> , 2014 , 25-45	0.3	2
244	Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. <i>Computational Mechanics</i> , 2014 , 54, 1047-1053	4	39
243	Biomedical fluid mechanics and fluid Structure interaction. Computational Mechanics, 2014, 54, 893-893	4	1
242	Spacelime interface-tracking with topology change (ST-TC). Computational Mechanics, 2014, 54, 955-97	14	104
241	Space l ime fluid mechanics computation of heart valve models. <i>Computational Mechanics</i> , 2014 , 54, 973-986	4	98

(2013-2014)

240	A variational multiscale method for particle-cloud tracking in turbomachinery flows. <i>Computational Mechanics</i> , 2014 , 54, 1191-1202	4	43
239	Main aspects of the spacelime computational FSI techniques and examples of challenging problems solved. <i>Mechanical Engineering Reviews</i> , 2014 , 1, CM0005-CM0005	4.7	3
238	FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. <i>Computational Mechanics</i> , 2014 , 54, 1203-1220	4	71
237	Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. <i>Computational Mechanics</i> , 2014 , 54, 1461-1476	4	60
236	ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. <i>Mathematical Models and Methods in Applied Sciences</i> , 2014 , 24, 2437-2486	3.5	98
235	Spacetime computation techniques with continuous representation in time (ST-C). <i>Computational Mechanics</i> , 2014 , 53, 91-99	4	69
234	SpaceLime VMS computation of wind-turbine rotor and tower aerodynamics. <i>Computational Mechanics</i> , 2014 , 53, 1-15	4	111
233	Computational Engineering Analysis and Design with ALE-VMS and ST Methods. <i>Computational Methods in Applied Sciences (Springer)</i> , 2014 , 321-353	0.4	3
232	Computational Wind-Turbine Analysis with the ALE-VMS and ST-VMS Methods. <i>Computational Methods in Applied Sciences (Springer)</i> , 2014 , 355-386	0.4	
231	Ringsail-Parachute Fluid Mechanics Computation with Resolved Geometric Porosity. <i>The Proceedings of the Computational Mechanics Conference</i> , 2014 , 2014.27, 399-400	0	
230	1G26 Aortic-Valve Simulation with a High-Accuracy Method. <i>The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME</i> , 2014 , 2014.26, 229-230	0	
229	SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. <i>Computational Mechanics</i> , 2013 , 51, 171-185	4	52
228	Fluid Structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. <i>Computational Mechanics</i> , 2013 , 52, 1351-1364	4	90
227	Finite element computation and experimental validation of sloshing in rectangular tanks. <i>Computational Mechanics</i> , 2013 , 52, 1301-1312	4	19
226	Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. <i>Computational Mechanics</i> , 2013 , 51, 1061-1073	4	90
225	CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID S TRUCTURE INTERACTION. <i>Mathematical Models and Methods in Applied Sciences</i> , 2013 , 23, 215-221	3.5	103
224	Computer modeling techniques for flapping-wing aerodynamics of a locust. <i>Computers and Fluids</i> , 2013 , 85, 125-134	2.8	80
223	METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION. <i>Mathematical Models and Methods in Applied Sciences</i> , 2013 , 23, 307-338	3.5	103

222	SPACETIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2013 , 23, 223-248	3.5	73
221	2508 FSI Analysis of JAXA HTV-R Parachute. <i>The Proceedings of the Computational Mechanics Conference</i> , 2013 , 2013.26, _2508-12508-2_	O	
220	2521 Thermo-fluid analysis around a disk brake. <i>The Proceedings of the Computational Mechanics Conference</i> , 2013 , 2013.26, _2521-12521-2_	O	
219	2013,		229
218	ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID®TRUCTURE INTERACTION. <i>Mathematical Models and Methods in Applied Sciences</i> , 2012 , 22, 1230002	3.5	131
217	Computational fluid mechanics and fluid Structure interaction. Computational Mechanics, 2012, 50, 665-	6 Ģ 5	2
216	Governing Equations of Fluid and Structural Mechanics 2012 , 1-35		
215	Basics of the Finite Element Method for Nonmoving-Domain Problems 2012 , 37-72		
214	Basics of the Isogeometric Analysis 2012 , 73-81		
213	ALE and SpaceIIime Methods for Moving Boundaries and Interfaces 2012 , 83-109		
212	ALE and SpaceTime Methods for FSI 2012 , 111-137		
211	Advanced FSI and SpaceIIime Techniques 2012 , 139-169		
210	General Applications and Examples of FSI Modeling 2012 , 171-190		
209	Cardiovascular FSI 2012 , 191-258		
208	Parachute FSI 2012 , 259-314		
207	Wind-Turbine Aerodynamics and FSI 2012 , 315-351		
206	Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. <i>Computational Mechanics</i> , 2012 , 50, 675-686	4	82
205	Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. <i>Computational Mechanics</i> , 2012 , 50, 695-705	4	43

(2011-2012)

204	Spacelime techniques for computational aerodynamics modeling of flapping wings of an actual locust. <i>Computational Mechanics</i> , 2012 , 50, 743-760	4	110
203	SpaceEime computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. <i>Computational Mechanics</i> , 2012 , 50, 761-778	4	100
202	Fluid Structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. <i>Computational Mechanics</i> , 2012 , 50, 835-854	4	74
201	J025012 Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. <i>The Proceedings of Mechanical Engineering Congress Japan</i> , 2012 , 2012, _J025012-1J025012-3	О	
200	Computational Methods for Parachute FluidBtructure Interactions. <i>Archives of Computational Methods in Engineering</i> , 2012 , 19, 125-169	7.8	132
199	SpaceIIime and ALE-VMS Techniques for Patient-Specific Cardiovascular FluidItructure Interaction Modeling. <i>Archives of Computational Methods in Engineering</i> , 2012 , 19, 171-225	7.8	152
198	Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2012 , 79,	2.7	34
197	A Comparative Study Based on Patient-Specific Fluid-Structure Interaction Modeling of Cerebral Aneurysms. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2012 , 79,	2.7	38
196	Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2012 , 79,	2.7	48
195	SPACEIIME FLUIDITRUCTURE INTERACTION METHODS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2012 , 22, 1230001	3.5	136
194	Space-Time Computational Techniques for the Aerodynamics of Flapping Wings. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2012 , 79,	2.7	109
193	Bringing them Down Safely. <i>Mechanical Engineering</i> , 2012 , 134, 34-37	0.9	8
192	Multiscale spacelime fluidEtructure interaction techniques. Computational Mechanics, 2011, 48, 247-26	74	208
191	Stabilized spaceEime computation of wind-turbine rotor aerodynamics. <i>Computational Mechanics</i> , 2011 , 48, 333-344	4	117
190	SpaceEime FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. <i>Computational Mechanics</i> , 2011 , 48, 345-364	4	76
189	Numerical-performance studies for the stabilized spacelime computation of wind-turbine rotor aerodynamics. <i>Computational Mechanics</i> , 2011 , 48, 647-657	4	111
188	Spacelime SUPG finite element computation of shallow-water flows with moving shorelines. <i>Computational Mechanics</i> , 2011 , 48, 293-306	4	26
187	A parallel sparse algorithm targeting arterial fluid mechanics computations. <i>Computational Mechanics</i> , 2011 , 48, 377-384	4	33

186	Comments on Adiabatic shock capturing in perfect gas hypersonic flows <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 66, 935-938	1.9	4
185	Comments on paratrooper-separation modeling with the DSD/SST formulation and FOIST. International Journal for Numerical Methods in Fluids, 2011, 66, 1068-1072	1.9	
184	Fluid Itructure interaction modeling and performance analysis of the Orion spacecraft parachutes. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 271-285	1.9	57
183	FluidEtructure interaction modeling of parachute clusters. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 286-307	1.9	75
182	Patient-specific arterial fluid tructure interaction modeling of cerebral aneurysms. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 308-323	1.9	70
181	3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 207-235	1.9	245
180	Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 135-149	1.9	42
179	Influencing factors in image-based fluidEtructure interaction computation of cerebral aneurysms. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 324-340	1.9	49
178	Stabilized finite element computation of NOx emission in aero-engine combustors. <i>International Journal for Numerical Methods in Fluids</i> , 2011 , 65, 254-270	1.9	57
177	Spacelime fluidEtructure interaction modeling of patient-specific cerebral aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27, 1665-1710	2.6	85
176	Comment on "Three-Dimensional Aerodynamic Simulations of Jumping Paratroopers and Falling Cargo Payloads". <i>Journal of Aircraft</i> , 2011 , 48, 1471-1472	1.6	
175	Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2010 , 199, 828-840	5.7	185
174	Multiscale sequentially-coupled arterial FSI technique. Computational Mechanics, 2010, 46, 17-29	4	81
173	Wall shear stress calculations in spacelime finite element computation of arterial fluid tructure interactions. <i>Computational Mechanics</i> , 2010 , 46, 31-41	4	90
172	Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. <i>Computational Mechanics</i> , 2010 , 46, 83-89	4	45
171	Role of 0D peripheral vasculature model in fluid\(\text{\textstyle{\text{B}}}\)tructure interaction modeling of aneurysms. <i>Computational Mechanics</i> , 2010 , 46, 43-52	4	56
170	A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. <i>Computational Mechanics</i> , 2010 , 46, 159-167	4	58
169	Stabilized Methods for Compressible Flows. <i>Journal of Scientific Computing</i> , 2010 , 43, 343-368	2.3	102

(2008-2010)

168	Spacelime finite element computation of complex fluidItructure interactions. <i>International Journal for Numerical Methods in Fluids</i> , 2010 , 64, 1201-1218	1.9	126
167	Space l ime SUPG formulation of the shallow-water equations. <i>International Journal for Numerical Methods in Fluids</i> , 2010 , 64, 1379-1394	1.9	22
166	Spacelime finite element computation of arterial fluid litructure interactions with patient-specific data. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2010 , 26, 101-116	2.6	101
165	Influence of wall thickness on fluid Itructure interaction computations of cerebral aneurysms. <i>International Journal for Numerical Methods in Biomedical Engineering</i> , 2010 , 26, 336-347	2.6	73
164	Computational Modeling of the Collapse of a Liquid Column Over an Obstacle and Experimental Validation. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	10
163	A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	49
162	Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZIShock-Capturing. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	54
161	Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	42
160	Three-Dimensional Edge-Based SUPG Computation of Inviscid Compressible Flows With YZ Shock-Capturing. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	20
159	Correct implementation of the fluidBbject interactions subcomputation technique (FOIST). <i>Communications in Numerical Methods in Engineering</i> , 2009 , 25, 1055-1058		
158	Comments on Bimplex spacelime meshes in finite element simulations International Journal for Numerical Methods in Fluids, 2009 , 60, 1289-1290	1.9	1
157	Sequentially-Coupled Arterial FluidBtructure Interaction (SCAFSI) technique. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2009 , 198, 3524-3533	5.7	79
156	Fluid Structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2009 , 198, 3613-3621	5.7	115
155	Special Issue on Stabilized, Multiscale, and Multiphysics Methods in Fluid Mechanics. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2009 , 76,	2.7	1
154	Fluid Etructure interaction modeling of ringsail parachutes. Computational Mechanics, 2008, 43, 133-142	4	84
153	Interface projection techniques for fluidEtructure interaction modeling with moving-mesh methods. <i>Computational Mechanics</i> , 2008 , 43, 39-49	4	111
152	A nested iterative scheme for computation of incompressible flows in long domains. <i>Computational Mechanics</i> , 2008 , 43, 73-80	4	51
151	Modeling of fluidEtructure interactions with the spaceEime finite elements: contact problems. <i>Computational Mechanics</i> , 2008 , 43, 51-60	4	54

150	Fluid Structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. <i>Computational Mechanics</i> , 2008 , 43, 151-159	4	127
149	Arterial fluid mechanics modeling with the stabilized spacelime fluid litructure interaction technique. <i>International Journal for Numerical Methods in Fluids</i> , 2008 , 57, 601-629	1.9	129
148	Stabilized formulations for incompressible flows with thermal coupling. <i>International Journal for Numerical Methods in Fluids</i> , 2008 , 57, 1189-1209	1.9	44
147	Modelling of fluidEtructure interactions with the spaceEime finite elements: Solution techniques. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 855-900	1.9	312
146	Modelling of fluidEtructure interactions with the spaceEime finite elements: Arterial fluid mechanics. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 901-922	1.9	134
145	Computation of inviscid compressible flows with the V-SGS stabilization and YZIshock-capturing. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 695-706	1.9	47
144	Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 1011-1019	1.9	24
143	Computation of fluidBolid and fluidBuid interfaces with the CIP method based on adaptive Soroban gridsAn overview. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 841-853	1.9	16
142	YZIdiscontinuity capturing for advection-dominated processes with application to arterial drug delivery. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 593-608	1.9	111
141	Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm D ependence of the effect on the aneurysm shape. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 995-1009	1.9	71
140	A Numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluidBolid and fluidBuid interfaces. <i>International Journal for Numerical Methods in Fluids</i> , 2007 , 54, 1021-1030	1.9	25
139	Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces. <i>Computers and Fluids</i> , 2007 , 36, 191-206	2.8	142
138	Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). <i>Computers and Fluids</i> , 2007 , 36, 121-126	2.8	82
137	Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT). <i>Computers and Fluids</i> , 2007 , 36, 2-11	2.8	44
136	SUPG finite element computation of inviscid supersonic flows with YZIshock-Capturing. <i>Computers and Fluids</i> , 2007 , 36, 147-159	2.8	68
135	FluidEtructure interaction modeling of complex parachute designs with the spaceEime finite element techniques. <i>Computers and Fluids</i> , 2007 , 36, 127-135	2.8	20
134	Collapse of a Liquid Column: Numerical Simulation and Experimental Validation. <i>Computational Mechanics</i> , 2007 , 39, 453-476	4	50
133	Computation of free-surface flows and fluid bject interactions with the CIP method based on adaptive meshless soroban grids. <i>Computational Mechanics</i> , 2007 , 40, 167-183	4	55

(2005-2007)

132	Finite elements in fluids: Special methods and enhanced solution techniques. <i>Computers and Fluids</i> , 2007 , 36, 207-223	2.8	44
131	Influence of wall elasticity in patient-specific hemodynamic simulations. <i>Computers and Fluids</i> , 2007 , 36, 160-168	2.8	132
130	Comments on "Parallel Implementation of Structural Dynamic Analysis for Parachute Simulation". <i>AIAA Journal</i> , 2007 , 45, 2364-2364	2.1	2
129	Spacelime finite element techniques for computation of fluidlitructure interactions. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 2002-2027	5.7	248
128	Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 2983-30	ი ნ ⁷	93
127	Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 1621-1632	5.7	140
126	Parallel finite element computations in fluid mechanics. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 1872-1884	5.7	22
125	Computer modeling of cardiovascular fluidEtructure interactions with the deforming-spatial-domain/stabilized spaceEime formulation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 1885-1895	5.7	137
124	Solution techniques for the fully discretized equations in computation of fluid Itructure interactions with the space It me formulations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2006 , 195, 5743-5753	5.7	148
123	Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZIShock-Capturing. <i>Computational Mechanics</i> , 2006 , 38, 469-481	4	81
122	Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices. <i>Computational Mechanics</i> , 2006 , 38, 334-343	4	31
121	Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation. <i>Computational Mechanics</i> , 2006 , 38, 356-364	4	68
120	Enhanced-discretization Selective Stabilization Procedure (EDSSP). <i>Computational Mechanics</i> , 2006 , 38, 456-468	4	36
119	Special Issue of Computational Mechanics on Stabilized, Multiscale and Multiphysics Methods. <i>Computational Mechanics</i> , 2006 , 38, 293-293	4	1
118	Fluid Structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures. <i>Computational Mechanics</i> , 2006 , 38, 482-490	4	141
117	Modeling of Fluid-Structure Interactions with the Space-Time Techniques 2006 , 50-81		21
116	Overview of the Airdrop Systems Modeling Project within the Collaborative Simulation and Test (CST) Common High Performance Computing Software Support Initiative (CHSSI) Portfolio 2005 ,		5
115	A robust preconditioner for fluid Etructure interaction problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2005 , 194, 4027-4047	5.7	28

114	Moving-interface computations with the edge-tracked interface locator technique (ETILT). <i>International Journal for Numerical Methods in Fluids</i> , 2005 , 47, 451-469	1.9	37
113	FluidEtructure interaction modelling of parachute soft-landing dynamics. <i>International Journal for Numerical Methods in Fluids</i> , 2005 , 47, 619-631	1.9	12
112	Enhanced-discretization successive update method (EDSUM). <i>International Journal for Numerical Methods in Fluids</i> , 2005 , 47, 633-654	1.9	13
111	Compressible flow SUPG parameters computed from element matrices. <i>Communications in Numerical Methods in Engineering</i> , 2005 , 21, 465-476		28
110	Enhanced-discretization spacelime technique (EDSTT). Computer Methods in Applied Mechanics and Engineering, 2004 , 193, 1385-1401	5.7	31
109	Enhanced-approximation linear solution technique (EALST). <i>Computer Methods in Applied Mechanics and Engineering</i> , 2004 , 193, 2033-2049	5.7	6
108	Automatic mesh update with the solid-extension mesh moving technique. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2004 , 193, 2019-2032	5.7	158
107	Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2004 , 193, 1909-1922	5.7	54
106	Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces 2004,		52
105	Influence of Wall Elasticity on Image-Based Blood Flow Simulations. <i>Nihon Kikai Gakkai Ronbunshu,</i> A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004 , 70, 1224-1231		45
104	Aerodynamic Interactions Between Parachute Canopies. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2003 , 70, 50-57	2.7	28
103	Computation of Moving Boundaries and Interfaces and Stabilization Parameters 2003 , 240-259		
102	Computation of moving boundaries and interfaces and stabilization parameters. <i>International Journal for Numerical Methods in Fluids</i> , 2003 , 43, 555-575	1.9	351
101	. Computing in Science and Engineering, 2003 , 5, 39-46	1.5	22
100	Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2003 , 70, 58-63	2.7	279
99	Stabilization Parameters and Smagorinsky Turbulence Model. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2003 , 70, 2-9	2.7	47
98	Stabilized Finite Element Formulations and Interface-Tracking and Interface-Capturing Techniques for Incompressible Flows 2003 , 221-239		16
97	Computation of mould filling processes with a moving Lagrangian interface technique. Communications in Numerical Methods in Engineering, 2002, 18, 483-493		23

(2000-2001)

96	Finite element methods for flow problems with moving boundaries and interfaces. <i>Archives of Computational Methods in Engineering</i> , 2001 , 8, 83-130	7.8	285	
95	Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 190, 3189-3200	5.7	56	
94	Methods for 3D computation of fluid bject interactions in spatially periodic flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 190, 3201-3221	5.7	39	
93	A moving Lagrangian interface technique for flow computations over fixed meshes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 191, 525-543	5.7	46	
92	The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 191, 705-716	5.7	27	
91	FluidEtructure interactions of a parachute crossing the far wake of an aircraft. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 191, 717-726	5.7	92	
90	FluidEtructure interactions of a cross parachute: numerical simulation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2001 , 191, 673-687	5.7	83	
89	Impulsively Started Flow About a Rigid Parachute Canopy. <i>Journal of Aircraft</i> , 2001 , 38, 1102-1109	1.6	8	
88	Computational aerodynamics of a paratrooper separating from an aircraft 2001,		4	
87	Fluid-Structure Interactions of a Round Parachute: Modeling and Simulation Techniques. <i>Journal of Aircraft</i> , 2001 , 38, 800-808	1.6	58	
86	Aerodynamics of the Crew Return Vehicle and parafoil at different opening stages 2001, 857-860			
85	Interface-tracking and interface-capturing techniques for computation of two-fluid flows 2001 , 989-99	92	8	
84	Aerodynamic simulation of an object separating from an aircraft during initial deployment 2001 , 1004-	1007	2	
83	Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 243-261	5.7	54	
82	A parallel 3D computational method for fluid tructure interactions in parachute systems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 321-332	5.7	175	
81	FluidBbject interactions in interior ballistics. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 363-372	5.7	6	
80	Parachute fluid Itructure interactions: 3-D computation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 373-386	5.7	155	
79	EDICT for 3D computation of two-fluid interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 403-410	5.7	22	

78	Finite element stabilization parameters computed from element matrices and vectors. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2000 , 190, 411-430	5.7	305
77	3-D computation of parachute fluid-structure interactions - Performance and control 1999 ,		13
76	The Shear-Slip Mesh Update Method. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1999 , 174, 261-274	5.7	99
75	Multi-domain parallel computation of wake flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1999 , 174, 371-391	5.7	17
74	CFD methods for three-dimensional computation of complex flow problems. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1999 , 81, 97-116	3.7	27
73	Methods for parallel computation of complex flow problems. <i>Parallel Computing</i> , 1999 , 25, 2039-2066	1	43
72	Parallel finite element computation of free-surface flows. <i>Computational Mechanics</i> , 1999 , 23, 117-123	4	37
71	Advanced mesh generation and update methods for 3D flow simulations. <i>Computational Mechanics</i> , 1999 , 23, 130-143	4	179
70	Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows. <i>Computational Mechanics</i> , 1999 , 23, 144-150	4	3
69	Parallel computation of unsteady compressible flows with the EDICT. <i>Computational Mechanics</i> , 1999 , 23, 151-157	4	18
68	Fluid-structure interaction simulation of a cross parachute - Comparison of numerical predictions with wind tunnel data 1999 ,		10
67	3D computation of unsteady flow past a sphere with a parallel finite element method. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1998 , 151, 267-276	5.7	11
66	Physics based GMRES preconditioner for compressible and incompressible Navier-Stokes equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1998 , 154, 203-228	5.7	15
65	Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1998 , 155, 235-248	5.7	84
64	A unified finite element formulation for compressible and incompressible flows using augmented conservation variables. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1998 , 161, 229-243	5.7	24
63	Parallel computation of parachute fluid-structure interactions 1997,		25
62	Parallel 3D computation of unsteady flows around circular cylinders. <i>Parallel Computing</i> , 1997 , 23, 1235	-1248	34
61	Parallel implementations of a finite element formulation for fluid-structure interactions in interior flows. <i>Parallel Computing</i> , 1997 , 23, 1279-1292	1	12

60	Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes. <i>Parallel Computing</i> , 1997 , 23, 1349-1363	1	13
59	3D Simulation of fluid-particle interactions with the number of particles reaching 100. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1997 , 145, 301-321	5.7	160
58	Parallel finite element simulation of large ram-air parachutes. <i>International Journal for Numerical Methods in Fluids</i> , 1997 , 24, 1353-1369	1.9	35
57	Parallel finite element methods for large-scale computation of storm surges and tidal flows. <i>International Journal for Numerical Methods in Fluids</i> , 1997 , 24, 1371-1389	1.9	19
56	Parallel computation of incompressible flows with complex geometries 1997 , 24, 1321		10
55	Flow simulation and high performance computing. <i>Computational Mechanics</i> , 1996 , 18, 397-412	4	133
54	Simulation of multiple spheres falling in a liquid-filled tube. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1996 , 134, 351-373	5.7	189
53	Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1995 , 123, 309-316	5.7	103
52	Inflation analysis of ram air inflated gliding parachutes 1995,		7
51	Parallel fluid dynamics computations in aerospace applications. <i>International Journal for Numerical Methods in Fluids</i> , 1995 , 21, 783-805	1.9	66
50	Three-step explicit finite element computation of shallow water flows on a massively parallel computer. <i>International Journal for Numerical Methods in Fluids</i> , 1995 , 21, 885-900	1.9	31
49	Parallel finite element simulation of 3D incompressible flows: Fluid-structure interactions. <i>International Journal for Numerical Methods in Fluids</i> , 1995 , 21, 933-953	1.9	127
48	Space-time finite element computation of compressible flows between moving components. <i>International Journal for Numerical Methods in Fluids</i> , 1995 , 21, 981-991	1.9	12
47	Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 119, 73-94	5.7	382
46	Implementation of implicit finite element methods for incompressible flows on the CM-5. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 119, 95-111	5.7	31
45	Massively parallel finite element simulation of compressible and incompressible flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 119, 157-177	5.7	129
44	Finite element solution strategies for large-scale flow simulations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 112, 3-24	5.7	110
43	Massively parallel finite element computation of incompressible flows involving fluid-body interactions. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1994 , 112, 253-282	5.7	97

42	SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1993 , 104, 397-422	5.7	141
41	Computation of incompressible flows with implicit finite element implementations on the Connection Machine. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1993 , 108, 99-118	5.7	62
40	Space-time finite element computation of compressible flows involving moving boundaries and interfaces. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1993 , 107, 209-223	5.7	98
39	Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1993 , 104, 31-48	5.7	92
38	. Computer, 1993 , 26, 27-36	1.6	224
37	A new strategy for finite element computations involving moving boundaries and interfaces the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering, 1992, 94, 339-351	5.7	637
36	A new strategy for finite element computations involving moving boundaries and interfaces he deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering,	5.7	501
35	1992, 94, 353-371 A new mixed preconditioning method for finite element computations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1992, 99, 27-42	5.7	25
34	Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1992 , 100, 117-141	5.7	59
33	Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1992 , 95, 221-242	5.7	613
32	Notes on the stabilized space-time finite-element formulation of unsteady incompressible flows. <i>Computer Physics Communications</i> , 1992 , 73, 93-112	4.2	26
31	A finite element study of incompressible flows past oscillating cylinders and aerofoils. <i>International Journal for Numerical Methods in Fluids</i> , 1992 , 15, 1073-1118	1.9	120
30	Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1991 , 87, 363-384	5.7	21
29	On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1991 , 85, 207-217	5.7	13
28	Vorticity-streamfunction formulation of unsteady incompressible flow past a cylinder: Sensitivity of the computed flow field to the location of the outflow boundary. <i>International Journal for Numerical Methods in Fluids</i> , 1991 , 12, 323-342	1.9	39
27	Numerical Simulation of Deep-Well Wet Oxidation Reactor using Steam. <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 798-819	2.4	1
26	Finite Element Solution of Flow Problems with Mixed-Time Integration. <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 1311-1330	2.4	3
25	Stabilized Finite Element Formulations for Incompressible Flow Computations. <i>Advances in Applied Mechanics</i> , 1991 , 28, 1-44	10	424

24	Numerical Experiments on Downstream Boundary of Flow Past Cylinder. <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 854-871	2.4	30
23	Adaptive implicit-explicit finite element algorithms for fluid mechanics problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1990 , 78, 165-179	5.7	12
22	Computation of spatially periodic flows based on the vorticity-stream function formulation. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1990 , 83, 121-142	5.7	9
21	Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. <i>Computers and Structures</i> , 1990 , 35, 445-472	4.5	37
20	Solution techniques for the vorticity treamfunction formulation of two-dimensional unsteady incompressible flows. <i>International Journal for Numerical Methods in Fluids</i> , 1990 , 11, 515-539	1.9	33
19	Finite element formulation for transport equations in a mixed co-ordinate system: An application to determine temperature effects on the single-well chemical tracer test. <i>International Journal for Numerical Methods in Fluids</i> , 1990 , 11, 769-790	1.9	4
18	Iterative adaptive implicitexplicit methods for flow problems. <i>International Journal for Numerical Methods in Fluids</i> , 1990 , 11, 867-880	1.9	4
17	Finite Element Simulation of Deep-Well Wet-Oxidation Reactor. <i>Journal of Engineering Mechanics - ASCE</i> , 1990 , 116, 1780-1797	2.4	1
16	Grouped element-by-element iteration schemes for incompressible flow computations. <i>Computer Physics Communications</i> , 1989 , 53, 441-453	4.2	15
15	A new formulation for numerical simulation of electrophoresis separation processes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1989 , 75, 515-530	5.7	3
14	Finite element formulation for the vorticity-stream function form of the incompressible euler equations on multiply-connected domains. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1989 , 73, 331-339	5.7	13
13	Petrov-Galerkin methods on multiply connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations. <i>International Journal for Numerical Methods in Fluids</i> , 1988 , 8, 1269-1290	1.9	46
12	Finite element procedures for time-dependent convection diffusion beaction systems. <i>International Journal for Numerical Methods in Fluids</i> , 1987 , 7, 1013-1033	1.9	26
11	Petrov-Galerkin formulations for electrochemical processes. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1987 , 65, 61-83	5.7	4
10	Finite deformation of a circular elastic membrane containing a concentric rigid inclusion. <i>International Journal of Non-Linear Mechanics</i> , 1987 , 22, 61-72	2.8	22
9	Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1986 , 59, 307-325	5.7	192
8	Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1986 , 59, 49-71	5.7	87
7	Profiles of minimum stress concentration for antiplane deformation of an elastic solid. <i>Journal of Elasticity</i> , 1985 , 15, 271-282	1.5	2

6	Analysis of some fully-discrete algorithms for the one-dimensional heat equation. <i>International Journal for Numerical Methods in Engineering</i> , 1985 , 21, 163-168	2.4	6
5	Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1984 , 45, 217-28	8 4 ·7	307
4	Stability and accuracy analysis of some fully-discrete algorithms for the one-dimensional second-order wave equation. <i>Computers and Structures</i> , 1984 , 19, 665-668	4.5	13
3	Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1981 , 48, 587-596	2.7	491
2	Patient-Specific Computational Fluid Mechanics of Cerebral Arteries with Aneurysm and Stent119-147		2
1	Spacelime isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. <i>Computational Mechanics</i> ,1	4	3