Premysl Bercik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1776388/publications.pdf Version: 2024-02-01

DDEMVSI REDCIK

#	Article	IF	CITATIONS
1	The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology, 2011, 141, 599-609.e3.	1.3	1,380
2	The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, 2012, 10, 735-742.	28.6	1,249
3	Chronic Gastrointestinal Inflammation Induces Anxiety-Like Behavior and Alters Central Nervous System Biochemistry in Mice. Gastroenterology, 2010, 139, 2102-2112.e1.	1.3	553
4	Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology, 2017, 153, 448-459.e8.	1.3	542
5	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	12.6	443
6	Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology, 2004, 127, 179-187.	1.3	407
7	Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine, 2017, 9, .	12.4	366
8	FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut, 2017, 66, 1241-1251.	12.1	330
9	The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?. Journal of Physiology, 2014, 592, 2989-2997.	2.9	242
10	AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology, 2020, 159, 697-705.	1.3	209
11	Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiology, 2015, 15, 67.	3.3	208
12	The Commensal Bacterium Faecalibacterium prausnitzii Is Protective in DNBS-induced Chronic Moderate and Severe Colitis Models. Inflammatory Bowel Diseases, 2014, 20, 417-430.	1.9	204
13	The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes, 2013, 4, 17-27.	9.8	194
14	The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Current Opinion in Microbiology, 2013, 16, 240-245.	5.1	180
15	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
16	Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology, 2004, 127, 826-837.	1.3	171
17	Is Irritable Bowel Syndrome a Low-Grade Inflammatory Bowel Disease?. Gastroenterology Clinics of North America, 2005, 34, 235-245.	2.2	165
18	Validation of the Rome III Criteria for the Diagnosis of Irritable Bowel Syndrome in Secondary Care. Gastroenterology, 2013, 145, 1262-1270.e1.	1.3	163

#	Article	IF	CITATIONS
19	Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology, 2019, 156, 46-58.e7.	1.3	162
20	The origin of segmentation motor activity in the intestine. Nature Communications, 2014, 5, 3326.	12.8	155
21	Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Medicine, 2016, 8, 72.	8.2	150
22	Interstitial cells of Cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology, 2000, 119, 1590-1599.	1.3	132
23	The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 2014, 5, 419-429.	9.8	112
24	Antidepressants Attenuate Increased Susceptibility to Colitis in a Murine Model of Depression. Gastroenterology, 2006, 130, 1743-1753.	1.3	111
25	Anxiety and Depression Increase in a Stepwise Manner in Parallel With Multiple FGIDs and Symptom Severity and Frequency. American Journal of Gastroenterology, 2015, 110, 1038-1048.	0.4	108
26	Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nature Communications, 2019, 10, 1198.	12.8	102
27	Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Science Translational Medicine, 2020, 12, .	12.4	98
28	Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins. Gastroenterology, 2019, 156, 2266-2280.	1.3	97
29	Novel Fecal Biomarkers That Precede Clinical Diagnosis of Ulcerative Colitis. Gastroenterology, 2021, 160, 1532-1545.	1.3	94
30	Safety of Adding Oats to a Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies. Gastroenterology, 2017, 153, 395-409.e3.	1.3	90
31	The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 279-289.	1.6	73
32	The Rome III Criteria for the Diagnosis of Functional Dyspepsia in Secondary Care Are Not Superior to Previous Definitions. Gastroenterology, 2014, 146, 932-940.e1.	1.3	71
33	Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection. Gastroenterology, 2002, 123, 1205-1215.	1.3	68
34	The microbiota-gut-brain axis: learning from intestinal bacteria?. Gut, 2011, 60, 288-289.	12.1	66
35	Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of <i>Helicobacter pylori</i> infection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R587-R594.	1.8	55
36	Association Between Inflammatory Bowel Diseases and Celiac Disease: A Systematic Review and Meta-Analysis. Gastroenterology, 2020, 159, 884-903.e31.	1.3	54

#	Article	IF	CITATIONS
37	Quantitative analysis of intestinal motor patterns: Spatiotemporal organization of nonneural pacemaker sites in the rat ileum. Gastroenterology, 2000, 119, 386-394.	1.3	51
38	Gluten Introduction to Infant Feeding and Risk of Celiac Disease: Systematic Review and Meta-Analysis. Journal of Pediatrics, 2016, 168, 132-143.e3.	1.8	47
39	Evidence-based and mechanistic insights into exclusion diets for IBS. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 406-413.	17.8	46
40	The role of luminal factors in the recovery of gastric function and behavioral changes after chronic <i>Helicobacter pylori</i> infection. American Journal of Physiology - Renal Physiology, 2008, 295, G664-G670.	3.4	44
41	Proton pump inhibitors for functional dyspepsia. The Cochrane Library, 2017, 3, CD011194.	2.8	40
42	Probiotics for Celiac Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. American Journal of Gastroenterology, 2020, 115, 1584-1595.	0.4	40
43	Epidemiology and Burden of Chronic Constipation. Canadian Journal of Gastroenterology & Hepatology, 2011, 25, 11B-15B.	1.7	39
44	Comparison of the metabolomic profiles of irritable bowel syndrome patients with ulcerative colitis patients and healthy controls: new insights into pathophysiology and potential biomarkers. Alimentary Pharmacology and Therapeutics, 2019, 49, 723-732.	3.7	37
45	Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients. Metabolomics, 2019, 15, 82.	3.0	32
46	Gluten-Free Diet Reduces Symptoms, Particularly Diarrhea, in Patients With Irritable Bowel Syndrome and AntigliadinÂlgG. Clinical Gastroenterology and Hepatology, 2021, 19, 2343-2352.e8.	4.4	30
47	Pathogenic Factors Involved in the Development of Irritable Bowel Syndrome: Focus on a Microbial Role. Infectious Disease Clinics of North America, 2010, 24, 961-975.	5.1	28
48	Targeting the microbiota–gut–brain axis to modulate behavior: Which bacterial strain will translate best to humans?. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E174; author reply E176.	7.1	25
49	Higher prevalence of irritable bowel syndrome and greater gastrointestinal symptoms in obsessive-compulsive disorder. Journal of Psychiatric Research, 2019, 118, 1-6.	3.1	22
50	Review: Effect of probiotics on gastrointestinal function: evidence from animal models. Therapeutic Advances in Gastroenterology, 2009, 2, S31-S35.	3.2	21
51	<i>Saccharomyces boulardii</i> CNCM lâ€745 modulates the microbiota–gut–brain axis in a humanized mouse model of Irritable Bowel Syndrome. Neurogastroenterology and Motility, 2021, 33, e13985.	3.0	20
52	Screening and Treatment Outcomes in Adults and Children With Type 1 Diabetes and Asymptomatic Celiac Disease: The CD-DIET Study. Diabetes Care, 2020, 43, 1553-1556.	8.6	19
53	Impact of <i>β </i> 2-1 fructan on faecal community change: results from a placebo-controlled, randomised, double-blinded, cross-over study in healthy adults. British Journal of Nutrition, 2017, 118, 441-453.	2.3	18
54	Lost in Translation: The Gut Microbiota in Psychiatric Illness. Canadian Journal of Psychiatry, 2015, 60, 460-463.	1.9	17

#	Article	IF	CITATIONS
55	ILSI Brazil International Workshop on Functional Foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health. Food and Nutrition Research, 2013, 57, 19214.	2.6	16
56	Lack of Utility of Symptoms and Signs at First Presentation as Predictors of Inflammatory Bowel Disease in Secondary Care. American Journal of Gastroenterology, 2015, 110, 716-724.	0.4	16
57	Application of metabolomics to the study of irritable bowel syndrome. Neurogastroenterology and Motility, 2020, 32, e13884.	3.0	12
58	Small-Molecule Allosteric Triggers of Clostridium difficile Toxin B Auto-proteolysis as a Therapeutic Strategy. Cell Chemical Biology, 2019, 26, 17-26.e13.	5.2	11
59	Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology, 2020, 79, 5-12.	1.9	11
60	Longâ€ŧerm personalized low FODMAP diet in IBS. Neurogastroenterology and Motility, 2022, 34, e14356.	3.0	11
61	Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization. Journal of Psychiatric Research, 2021, 135, 248-255.	3.1	9
62	Fecal microbiome differs between patients with systemic sclerosis with and without small intestinal bacterial overgrowth. Journal of Scleroderma and Related Disorders, 2021, 6, 290-298.	1.7	8
63	Derivation and validation of a novel method to subgroup patients with functional dyspepsia: beyond upper gastrointestinal symptoms. Alimentary Pharmacology and Therapeutics, 2021, 53, 253-264.	3.7	8
64	Su1990 The Role of Microbiota in the Maternal Separation Model of Depression. Gastroenterology, 2012, 142, S-554.	1.3	3
65	Minimal differences in prevalence and spectrum of organic disease at upper gastrointestinal endoscopy between selected secondary care patients with symptoms of gastro-oesophageal reflux or dyspepsia. Scandinavian Journal of Gastroenterology, 2017, 52, 396-402.	1.5	3
66	Spotlight: Probiotics Guidelines. Gastroenterology, 2020, 159, 707.	1.3	3
67	In Vivo motility disturbances in a model of post-infective IBS. Gastroenterology, 2001, 120, A71.	1.3	2
68	Diet-Microbiota Interactions Underlie Symptoms' Generation in IBS. Gastroenterology, 2017, 152, S160.	1.3	2
69	916 - Gut Microbiota-Diet Interactions in a Humanized Mouse Model of IBS: The Role of Intestinal Mast Cells. Gastroenterology, 2018, 154, S-182.	1.3	2
70	Su1658 - Gut Microbiota Defines Host Responses to Dietary Fermentable Carbohydrates in IBS: The Role of Bacterial Histamine. Gastroenterology, 2018, 154, S-565.	1.3	1
71	The Brain-Gut-Microbiome Axis and Irritable Bowel Syndrome. Gastroenterology and Hepatology, 2020, 16, 322-324.	0.1	1
72	Reply. Gastroenterology, 2018, 154, 764-765.	1.3	0

#	Article	IF	CITATIONS
73	Editorial: metabolomic biomarkers for colorectal adenocarcinoma and in the differentiation between irritable bowel syndrome and ulcerative colitis in clinical remission – confounded by the gut microbiome? Authors' reply. Alimentary Pharmacology and Therapeutics, 2019, 49, 1088-1089.	3.7	0
74	Gut Microbiome and Its Role in the Pathophysiology of Irritable Bowel Syndrome. Acta Gastroenterologica Latinoamericana, 2021, 51, .	0.1	0
75	Purinergic Pathways in the Spinal Microglia as a Putative Target for Treatment of Chronic Abdominal Pain. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	0