Remy Klaassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1776089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 199-206.	7.3	86
2	Deep learning how to fit an intravoxel incoherent motion model to diffusionâ€weighted MRI. Magnetic Resonance in Medicine, 2020, 83, 312-321.	3.0	74
3	Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta OncolÃ ³ gica, 2018, 57, 1475-1481.	1.8	58
4	Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Medical Physics, 2015, 42, 2638-2647.	3.0	44
5	Feasibility and repeatability of PET with the hypoxia tracer [18F]HX4 in oesophageal and pancreatic cancer. Radiotherapy and Oncology, 2015, 116, 94-99.	0.6	44
6	Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS ONE, 2018, 13, e0194590.	2.5	44
7	Improved unsupervised physicsâ€informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magnetic Resonance in Medicine, 2021, 86, 2250-2265.	3.0	41
8	Minimizing the Acquisition Time for Intravoxel Incoherent Motion Magnetic Resonance Imaging Acquisitions in the Liver and Pancreas. Investigative Radiology, 2016, 51, 211-220.	6.2	37
9	Feasibility of CT radiomics to predict treatment response of individual liver metastases in esophagogastric cancer patients. PLoS ONE, 2018, 13, e0207362.	2.5	31
10	Highâ€grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSFâ€1. EMBO Reports, 2020, 21, e48780.	4.5	29
11	Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study. Acta Oncológica, 2017, 56, 923-930.	1.8	23
12	Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience. Molecular Oncology, 2020, 14, 2176-2189.	4.6	23
13	Principal component analysis for fast and model-free denoising of multi b-value diffusion-weighted MR images. Physics in Medicine and Biology, 2019, 64, 105015.	3.0	22
14	Evaluation of Six Diffusion-weighted MRI Models for Assessing Effects of Neoadjuvant Chemoradiation in Pancreatic Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1052-1062.	0.8	20
15	Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiotherapy and Oncology, 2020, 153, 97-105.	0.6	19
16	Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer. Medical Image Analysis, 2022, 80, 102512.	11.6	17
17	Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma. Magnetic Resonance Imaging, 2018, 50, 1-9.	1.8	16
18	Soluble Compounds Released by Hypoxic Stroma Confer Invasive Properties to Pancreatic Ductal Adenocarcinoma. Biomedicines, 2020, 8, 444.	3.2	9

REMY KLAASSEN

#	Article	IF	CITATIONS
19	Quantitative assessment of biliary stent artifacts on MR images: Potential implications for target delineation in radiotherapy. Medical Physics, 2016, 43, 5603-5615.	3.0	7
20	Rapid stromal remodeling by shortâ€ŧerm VEGFR2 inhibition increases chemotherapy delivery in esophagogastric adenocarcinoma. Molecular Oncology, 2020, 14, 704-720.	4.6	7
21	Phase I/II Study of LDE225 in Combination with Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Cancer. Cancers, 2021, 13, 4869.	3.7	7
22	Revisiting the Potential of Alternating Repetition Time Balanced Steady-State Free Precession Imaging of the Abdomen at 3 T. Investigative Radiology, 2016, 51, 560-568.	6.2	4