Serena Riela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1775746/publications.pdf Version: 2024-02-01

SEDENA DIELA

#	Article	IF	CITATIONS
1	Halloysite nanotubes as support for metal-based catalysts. Journal of Materials Chemistry A, 2017, 5, 13276-13293.	5.2	228
2	Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers, 2016, 152, 548-557.	5.1	188
3	Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 2017, 5, 2867-2882.	2.9	165
4	Hydrophobically Directed Aldol Reactions: Polystyrene‣upported <scp>L</scp> â€Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water. European Journal of Organic Chemistry, 2007, 2007, 4688-4698.	1.2	150
5	Supported Ionic Liquids. New Recyclable Materials for theL-Proline-Catalyzed Aldol Reaction. Advanced Synthesis and Catalysis, 2006, 348, 82-92.	2.1	143
6	Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 505-513.	2.5	140
7	Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Letters, 2004, 45, 6113-6116.	0.7	136
8	Synthesis and Characterization of Halloysite–Cyclodextrin Nanosponges for Enhanced Dyes Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 3346-3352.	3.2	124
9	The interaction of native DNA with Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine. Journal of Inorganic Biochemistry, 2007, 101, 841-848.	1.5	108
10	New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium. Advanced Synthesis and Catalysis, 2008, 350, 2747-2760.	2.1	108
11	Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. International Journal of Pharmaceutics, 2014, 475, 613-623.	2.6	106
12	Biocompatible Poly(<i>N</i> -isopropylacrylamide)-halloysite Nanotubes for Thermoresponsive Curcumin Release. Journal of Physical Chemistry C, 2015, 119, 8944-8951.	1.5	98
13	Chemical modification of halloysite nanotubes for controlled loading and release. Journal of Materials Chemistry B, 2018, 6, 3415-3433.	2.9	97
14	The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. Journal of Functional Biomaterials, 2018, 9, 58.	1.8	96
15	Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules, 2020, 25, 4863.	1.7	88
16	Eco-friendly functionalization of natural halloysite clay nanotube with ionic liquids by microwave irradiation for Suzuki coupling reaction. Journal of Organometallic Chemistry, 2014, 749, 410-415.	0.8	81
17	Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. Journal of Colloid and Interface Science, 2018, 524, 156-164.	5.0	80
18	Functionalized halloysite multivalent glycocluster as a new drug delivery system. Journal of Materials Chemistry B, 2014, 2, 7732-7738.	2.9	77

#	Article	IF	CITATIONS
19	Multicavity halloysite–amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. Journal of Materials Chemistry B, 2015, 3, 4074-4081.	2.9	77
20	Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts. RSC Advances, 2016, 6, 55312-55318.	1.7	75
21	Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. Journal of Applied Microbiology, 2007, 104, 071008041820011-???.	1.4	74
22	Functionalized halloysite nanotubes for enhanced removal of lead(II) ions from aqueous solutions. Applied Clay Science, 2018, 156, 87-95.	2.6	74
23	A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry B, 2016, 4, 2229-2241.	2.9	69
24	Selective Functionalization of Halloysite Cavity by Click Reaction: Structured Filler for Enhancing Mechanical Properties of Bionanocomposite Films. Journal of Physical Chemistry C, 2014, 118, 15095-15101.	1.5	61
25	One-pot synthesis of ZnO nanoparticles supported on halloysite nanotubes for catalytic applications. Applied Clay Science, 2020, 189, 105527.	2.6	61
26	Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polymer Chemistry, 2014, 5, 4499-4510.	1.9	58
27	Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. International Journal of Pharmaceutics, 2015, 478, 476-485.	2.6	57
28	Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Advances, 2016, 6, 87935-87944.	1.7	53
29	Hybrid supramolecular gels of Fmoc-F/halloysite nanotubes: systems for sustained release of camptothecin. Journal of Materials Chemistry B, 2017, 5, 3217-3229.	2.9	53
30	Palladium supported on Halloysite-triazolium salts as catalyst for ligand free Suzuki cross-coupling in water under microwave irradiation. Journal of Molecular Catalysis A, 2015, 408, 12-19.	4.8	52
31	Ecotoxicity of halloysite nanotube–supported palladium nanoparticles in <i>Raphanus sativus</i> L. Environmental Toxicology and Chemistry, 2016, 35, 2503-2510.	2.2	52
32	Clay-based drug-delivery systems: what does the future hold?. Therapeutic Delivery, 2017, 8, 633-646.	1.2	49
33	Studies on the stereoselective selenolactonization, hydroxy and methoxy selenenylation of α- and β-hydroxy acids and esters. Synthesis of δ- and γ-lactones. Tetrahedron, 2003, 59, 2241-2251.	1.0	47
34	Green conditions for the Suzuki reaction using microwave irradiation and a new HNTâ€supported ionic liquidâ€like phase (HNTâ€SILLP) catalyst. Applied Organometallic Chemistry, 2014, 28, 234-238.	1.7	47
35	Halloysite nanotubes-carbon dots hybrids multifunctional nanocarrier with positive cell target ability as a potential non-viral vector for oral gene therapy. Journal of Colloid and Interface Science, 2019, 552, 236-246.	5.0	47
36	Palladium nanoparticles immobilized on halloysite nanotubes covered by a multilayer network for catalytic applications. New Journal of Chemistry, 2018, 42, 13938-13947.	1.4	46

#	Article	IF	CITATIONS
37	Thermodynamics of binding between α- and β-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy–entropy compensation effect. Tetrahedron, 2004, 60, 9099-9111.	1.0	45
38	Functionalized halloysite nanotubes: Efficient carrier systems for antifungine drugs. Applied Clay Science, 2018, 160, 186-192.	2.6	45
39	Effects of solventâ€free microwave extraction on the chemical composition of essential oil of <i>Calamintha nepeta</i> (L.) Savi compared with the conventional production method. Journal of Separation Science, 2008, 31, 1110-1117.	1.3	43
40	Spectrophotometric study on the thermodynamics of binding of α- and β-cyclodextrin towards some p-nitrobenzene derivativesElectronic supplementary information (ESI) available: Values of inclusion constants at different temperatures. See http://www.rsc.org/suppdata/ob/b3/b300330b/. Organic and Biomolecular Chemistry, 2003, 1, 1584-1590.	1.5	39
41	Multifunctional Carrier Based on Halloysite/Laponite Hybrid Hydrogel for Kartogenin Delivery. ACS Medicinal Chemistry Letters, 2019, 10, 419-424.	1.3	39
42	Ecocompatible Halloysite/Cucurbit[8]uril Hybrid as Efficient Nanosponge for Pollutants Removal. ChemistrySelect, 2016, 1, 1773-1779.	0.7	38
43	Photoluminescent hybrid nanomaterials from modified halloysite nanotubes. Journal of Materials Chemistry C, 2018, 6, 7377-7384.	2.7	35
44	Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications. Applied Organometallic Chemistry, 2019, 33, e4665.	1.7	34
45	Synthesis of 2,4,6-trisubstituted tetrahydropyrans via 6-exo selenoetherification of unsaturated alcohols. Tetrahedron Letters, 2001, 42, 2213-2215.	0.7	33
46	Halloysite nanotubes: a green resource for materials and life sciences. Rendiconti Lincei, 2020, 31, 213-221.	1.0	29
47	Host–guest interactions involving cyclodextrins: useful complementary insights achieved by polarimetry. Tetrahedron, 2007, 63, 9163-9171.	1.0	28
48	Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs. RSC Advances, 2016, 6, 50858-50866.	1.7	28
49	Hostâ ``Guest Interactions between β-Cyclodextrin and the (Z)-Phenylhydrazone of 3-Benzoyl-5-phenyl-1,2,4-oxadiazole:Â The First Kinetic Study of a Ringâ ``Ring Interconversion in a "Confined Environment†Journal of Organic Chemistry, 2002, 67, 2948-2953.	1.7	27
50	Binding equilibria between β-cyclodextrin and p-nitro-aniline derivatives: the first systematic study in mixed water–methanol solvent systems. Tetrahedron, 2009, 65, 2037-2042.	1.0	26
51	Halloysite Nanotubes: Smart Nanomaterials in Catalysis. Catalysts, 2022, 12, 149.	1.6	25
52	Spectrophotometric determination of binding constants between some aminocyclodextrins and nitrobenzene derivatives at various pH values. Tetrahedron, 2002, 58, 6039-6045.	1.0	23
53	Sequential Suzuki/Asymmetric Aldol and Suzuki/Knoevenagel Reactions Under Aqueous Conditions. European Journal of Organic Chemistry, 2012, 2012, 2635-2642.	1.2	23
54	Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. Journal of Molecular Catalysis A, 2015, 408, 250-261.	4.8	23

#	Article	IF	CITATIONS
55	First Evidence of Proline Acting as a Bifunctional Catalyst in the Baylis–Hillman Reaction Between Alkyl Vinyl Ketones and Aryl Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 1589-1596.	1.2	22
56	Effect of halloysite nanotubes filler on polydopamine properties. Journal of Colloid and Interface Science, 2019, 555, 394-402.	5.0	22
57	Boosting the properties of a fluorescent dye by encapsulation into halloysite nanotubes. Dyes and Pigments, 2021, 187, 109094.	2.0	20
58	Spectrophotometric determinations of binding constants between cyclodextrins and aromatic nitrogen substrates at various pH values. Tetrahedron, 2001, 57, 6823-6827.	1.0	19
59	Polarimetry as a useful tool for the determination of binding constants between cyclodextrins and organic guest molecules. Tetrahedron Letters, 2006, 47, 9099-9102.	0.7	19
60	Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics. RSC Advances, 2014, 4, 63200-63207.	1.7	19
61	Chemical and biological evaluation of cross-linked halloysite-curcumin derivatives. Applied Clay Science, 2020, 184, 105400.	2.6	19
62	Synthesis, characterization and study of covalently modified triazole LAPONITE® edges. Applied Clay Science, 2020, 187, 105489.	2.6	19
63	Ciprofloxacin carrier systems based on hectorite/halloysite hybrid hydrogels for potential wound healing applications. Applied Clay Science, 2021, 215, 106310.	2.6	19
64	A joint experimental and ab initio study on the reactivity of several hydroxy selenides. Stereoselective synthesis of cis-disubstituted tetrahydrofurans via seleniranium ions. Tetrahedron, 2001, 57, 6815-6822.	1.0	18
65	A study on the essential oil of <i>Ferulago campestris</i> : How much does extraction method influence the oil composition?. Journal of Separation Science, 2011, 34, 483-492.	1.3	18
66	Synthesis and Characterization of Nanomaterial Based on Halloysite and Hectorite Clay Minerals Covalently Bridged. Nanomaterials, 2021, 11, 506.	1.9	18
67	Chiral recognition of protected amino acids by means of fluorescent binary complex pyrene/heptakis-(6-amino)-(6-deoxy)-î²-cyclodextrin. Tetrahedron, 2006, 62, 4323-4330.	1.0	17
68	Cyclodextrin-[60]fullerene conjugates: synthesis, characterization, and electrochemical behavior. Tetrahedron Letters, 2006, 47, 8105-8108.	0.7	17
69	Binding properties of mono-(6-deoxy-6-amino)-β-cyclodextrin towards p-nitroaniline derivatives: a polarimetric study. Tetrahedron, 2009, 65, 10413-10417.	1.0	16
70	A spectrofluorimetric study of binary fluorophore–cyclodextrin complexes used as chiral selectors. Tetrahedron, 2005, 61, 4577-4583.	1.0	15
71	Microwave-assisted synthesis of novel cyclodextrin–cucurbituril complexes. Supramolecular Chemistry, 2011, 23, 819-828.	1.5	15
72	Synthesis and characterization of new polyamino-cyclodextrin materials. Carbohydrate Research, 2012, 347, 32-39.	1.1	15

#	Article	IF	CITATIONS
73	Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. Journal of Colloid and Interface Science, 2022, 620, 221-233.	5.0	15
74	Organo-Clay Nanomaterials Based on Halloysite and Cyclodextrin as Carriers for Polyphenolic Compounds. Journal of Functional Biomaterials, 2018, 9, 61.	1.8	14
75	Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors. International Journal of Pharmaceutics, 2021, 599, 120281.	2.6	14
76	Study of Uptake Mechanisms of Halloysite Nanotubes in Different Cell Lines. International Journal of Nanomedicine, 2021, Volume 16, 4755-4768.	3.3	14
77	Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system. Journal of Colloid and Interface Science, 2022, 606, 1779-1791.	5.0	14
78	The binary pyrene/heptakis-(6-amino-6-deoxy)-β-cyclodextrin complex: a suitable chiral discriminator. Spectrofluorimetric study of the effect of some α-amino acids and esters on the stability of the binary complex. Tetrahedron: Asymmetry, 2002, 13, 1755-1760.	1.8	13
79	Lipase-catalyzed resolution of Î ² -hydroxy selenides. Tetrahedron: Asymmetry, 2006, 17, 2713-2721.	1.8	13
80	Stability and stoichiometry of some binary fluorophore–cyclodextrin complexes. Tetrahedron, 2004, 60, 5309-5314.	1.0	11
81	Micellization properties of cardanol as a renewable co-surfactant. Organic and Biomolecular Chemistry, 2015, 13, 9214-9222.	1.5	11
82	Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112385.	2.5	11
83	Evaluation of the contribution of lignin stilbene phenol units in the photoyellowing of peroxide-bleached lignin-rich pulps. Journal of Applied Polymer Science, 1998, 69, 2517-2531.	1.3	10
84	Diastereoselective Synthesis of 2-Phenylselenenyl-1,3-anti-Diols and 2-Phenylselenenyl-1,3-anti-Azido-Alcohols via Hydroxyand Azido-Selenenylation Reactions. Molecules, 2005, 10, 383-393.	1.7	10
85	Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β-cyclodextrin: a polarimetric study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 121-127.	1.6	9
86	Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays. Beilstein Journal of Organic Chemistry, 2017, 13, 2751-2763.	1.3	9
87	The Daily Consumption of Cola Can Determine Hypocalcemia: A Case Report of Postsurgical Hypoparathyroidism-Related Hypocalcemia Refractory to Supplemental Therapy with High Doses of Oral Calcium. Frontiers in Endocrinology, 2017, 8, 7.	1.5	8
88	Diastereoselective Synthesis of Substituted 2-Phenyltetrahydropyrans as Useful Precursors of Aryl C-Glycosides via Selenoetherification. Heterocycles, 2004, 63, 681.	0.4	7
89	Current Status of Nanoclay Phytotoxicity. , 2018, , 151-174.		7
90	Supramolecular Association of Halochromic Switches and Halloysite Nanotubes in Fluorescent Nanoprobes for Tumor Detection. ACS Applied Nano Materials, 2022, 5, 13729-13736.	2.4	7

#	Article	IF	CITATIONS
91	Covalently modified nanoclays: synthesis, properties and applications. , 2020, , 305-333.		5
92	FUNCTIONALIZED HALLOYSITE NANOTUBES FOR ENHANCED REMOVAL OF Hg2+ IONS FROM AQUEOUS SOLUTIONS. Clays and Clay Minerals, 2021, 69, 117-127.	0.6	5
93	Binding abilities of new cyclodextrin–cucurbituril supramolecular hosts. Supramolecular Chemistry, 2015, 27, 233-243.	1.5	4
94	Colloidal stability and self-assembling behavior of nanoclays. , 2020, , 95-116.		4
95	Stereoselective Synthesis of Substituted Tetrahydropyran Rings via 6-exo and 6-endo Selenoetherification. Heterocycles, 2002, 57, 293.	0.4	4
96	Supported Ionic Liquid Asymmetric Catalysis. A New Method for Chiral Catalysts Recycling. The Case of Proline-Catalyzed Aldol Reaction ChemInform, 2004, 35, no.	0.1	2
97	Lipase-catalyzed resolution of anti-6-substituted 1,3-dioxepan-5-ols. Tetrahedron: Asymmetry, 2006, 17, 3128-3134.	1.8	2
98	Studies on the Stereoselective Selenolactonization, Hydroxy and Methoxy Selenenylation of α- and β-Hydroxy Acids and Esters. Synthesis of Ĩ´- and γ-Lactones ChemInform, 2003, 34, no.	0.1	0