
Anita A Koshy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1775468/publications.pdf Version: 2024-02-01

ΔΝΙΤΛ Δ ΚΟSHY

#	Article	IF	CITATIONS
1	Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nature Microbiology, 2016, 1, 16001.	5.9	160
2	Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathogens, 2016, 12, e1005447.	2.1	156
3	Toxoplasma Co-opts Host Cells It Does Not Invade. PLoS Pathogens, 2012, 8, e1002825.	2.1	138
4	Motile invaded neutrophils in the small intestine of <i>Toxoplasma gondii</i> -infected mice reveal a potential mechanism for parasite spread. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1913-22.	3.3	125
5	Astrocytic TGF-Î ² Signaling Limits Inflammation and Reduces Neuronal Damage during Central Nervous System <i>Toxoplasma</i> Infection. Journal of Immunology, 2014, 193, 139-149.	0.4	113
6	Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathogens, 2017, 13, e1006351.	2.1	113
7	Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii. PLoS Pathogens, 2014, 10, e1004047.	2.1	86
8	Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nature Methods, 2010, 7, 307-309.	9.0	82
9	Toxoplasma gondii Development of Its Replicative Niche: in Its Host Cell and Beyond. Eukaryotic Cell, 2014, 13, 965-976.	3.4	65
10	Toxoplasma gondii. Current Biology, 2018, 28, R770-R771.	1.8	63
11	A Nucleotide Sugar Transporter Involved in Glycosylation of the Toxoplasma Tissue Cyst Wall Is Required for Efficient Persistence of Bradyzoites. PLoS Pathogens, 2013, 9, e1003331.	2.1	61
12	STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. MBio, 2016, 7, .	1.8	57
13	The <i>Toxoplasma gondii</i> virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. Journal of Experimental Medicine, 2020, 217, .	4.2	43
14	Internalization and TLRâ€dependent type I interferon production by monocytes in response to <i>Toxoplasma gondii</i> . Immunology and Cell Biology, 2014, 92, 872-881.	1.0	41
15	Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype?. MBio, 2020, 11, .	1.8	33
16	Use of Transgenic Parasites and Host Reporters To Dissect Events That Promote Interleukin-12 Production during Toxoplasmosis. Infection and Immunity, 2014, 82, 4056-4067.	1.0	31
17	Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro, 2017, 9, 175909141772491.	1.5	30
18	The ROP16III-dependent early immune response determines the subacute CNS immune response and type III Toxoplasma gondii survival. PLoS Pathogens, 2019, 15, e1007856.	2.1	20

Ανιτά Α Κόσην

0

#	Article	IF	CITATIONS
19	High Fidelity Cryopreservation and Recovery of Primary Rodent Cortical Neurons. ENeuro, 2018, 5, ENEURO.0135-18.2018.	0.9	18
20	3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii . Journal of Visualized Experiments, 2014, , .	0.2	16
21	Transcriptional Profiling Suggests T Cells Cluster around Neurons Injected with Toxoplasma gondii Proteins. MSphere, 2020, 5, .	1.3	10
22	Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Scientific Reports, 2020, 10, 7979.	1.6	10
23	ROP16-Mediated Activation of STAT6 Suppresses Host Cell Reactive Oxygen Species Production, Facilitating Type III Toxoplasma gondii Growth and Survival. MBio, 2021, 12, .	1.8	9
24	Injection with Toxoplasma gondii protein affects neuron health and survival. ELife, 2021, 10, .	2.8	9
25	Three-Dimensional Reconstruction of Toxoplasma–Neuron Interactions In Situ. Methods in Molecular Biology, 2020, 2071, 283-295.	0.4	8
26	Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations. Journal of Neuroscience Methods, 2018, 305, 98-104.	1.3	7
27	A Single Transcription Factor Drives Toxoplasma gondii Differentiation. Cell, 2020, 180, 216-218.	13.5	1
28	Fever and Headache: Meningitis and Encephalitis. , 0, , 221-232.		0
29	Review of <i>Infections of the Central Nervous System </i> . JAMA Neurology, 2015, 72, 951.	4.5	0

30 Cerebral toxoplasmosis. , 2020, , 1043-1073.

3