List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/177530/publications.pdf Version: 2024-02-01

		1233	3576
500	45,039	110	181
papers	citations	h-index	g-index
533 all docs	533 docs citations	533 times ranked	23310 citing authors

#	Article	IF	CITATIONS
1	Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science, 2001, 291, 2141-2144.	6.0	1,835
2	PLANTRESPONSES TOINSECTHERBIVORY: The Emerging Molecular Analysis. Annual Review of Plant Biology, 2002, 53, 299-328.	8.6	1,299
3	The evolutionary context for herbivore-induced plant volatiles: beyond the â€~cry for help'. Trends in Plant Science, 2010, 15, 167-175.	4.3	973
4	New Insights into Plant Responses to the Attack from Insect Herbivores. Annual Review of Genetics, 2010, 44, 1-24.	3.2	752
5	Volatile Signaling in Plant-Plant Interactions: "Talking Trees" in the Genomics Era. Science, 2006, 311, 812-815.	6.0	737
6	Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8113-8118.	3.3	650
7	A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal, 2002, 31, 1-12.	2.8	560
8	Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 2002, 7, 61-67.	4.3	522
9	Silencing the Jasmonate Cascade: Induced Plant Defenses and Insect Populations. Science, 2004, 305, 665-668.	6.0	514
10	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. III. Fatty Acid-Amino Acid Conjugates in Herbivore Oral Secretions Are Necessary and Sufficient for Herbivore-Specific Plant Responses. Plant Physiology, 2001. 125. 711-717.	2.3	496
11	Nicotine's Defensive Function in Nature. PLoS Biology, 2004, 2, e217.	2.6	400
12	Herbivory Rapidly Activates MAPK Signaling in Attacked and Unattacked Leaf Regions but Not between Leaves of Nicotiana attenuata. Plant Cell, 2007, 19, 1096-1122.	3.1	391
13	Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508, 546-549.	13.7	352
14	Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5013-20.	3.3	336
15	Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia, 2006, 148, 280-292.	0.9	334
16	Field Experiments with Transformed Plants Reveal the Sense of Floral Scents. Science, 2008, 321, 1200-1202.	6.0	329
17	Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system. Chemoecology, 2002, 12, 177-183.	0.6	324
18	Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization inNicotiana attenuata. Plant Journal, 2003, 36, 794-807.	2.8	320

#	Article	IF	CITATIONS
19	SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proceedings of the United States of America, 2006, 103, 12935-12940.	3.3	312
20	Why Does Herbivore Attack Reconfigure Primary Metabolism?. Plant Physiology, 2008, 146, 845-851.	2.3	311
21	Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta, 2000, 210, 336-342.	1.6	302
22	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. I. Large-Scale Changes in the Accumulation of Growth- and Defense-Related Plant mRNAs. Plant Physiology, 2001, 125, 683-700.	2.3	302
23	Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant Journal, 2007, 49, 840-854.	2.8	300
24	Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 1997, 201, 397-404.	1.6	288
25	Different Lepidopteran Elicitors Account for Cross-Talk in Herbivory-Induced Phytohormone Signaling Â. Plant Physiology, 2009, 150, 1576-1586.	2.3	287
26	The Layers of Plant Responses to Insect Herbivores. Annual Review of Entomology, 2016, 61, 373-394.	5.7	287
27	Plant volatiles. Current Biology, 2010, 20, R392-R397.	1.8	265
28	Herbivory simulations in ecological research. Trends in Ecology and Evolution, 1990, 5, 91-93.	4.2	260
29	Relationships among Defoliation, Red Oak Phenolics, and Gypsy Moth Growth and Reproduction. Ecology, 1988, 69, 267-277.	1.5	252
30	Shared signals –â€~alarm calls' from plants increase apparency to herbivores and their enemies in nature. Ecology Letters, 2008, 11, 24-34.	3.0	250
31	A Self-Regulatory Circuit of CIRCADIAN CLOCK-ASSOCIATED1 Underlies the Circadian Clock Regulation of Temperature Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2427-2442.	3.1	249
32	Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 2003, 14, 169-176.	3.3	245
33	Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta, 1997, 203, 430-435.	1.6	243
34	Induced Plant Defenses in the Natural Environment: <i>Nicotiana attenuata</i> WRKY3 and WRKY6 Coordinate Responses to Herbivory. Plant Cell, 2008, 20, 1984-2000.	3.1	243
35	The eco-physiological complexity of plant responses to insect herbivores. Planta, 1999, 208, 137-145.	1.6	239
36	Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana Âattenuata and reveals the role of herbivore movement in avoiding defenses. Plant Journal, 2007, 51, 79-91.	2.8	237

#	Article	IF	CITATIONS
37	Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology, 2001, 27, 547-568.	0.9	236
38	Rapid HPLC Screening of Jasmonate-Induced Increases in Tobacco Alkaloids, Phenolics, and Diterpene Glycosides inNicotianaattenuata. Journal of Agricultural and Food Chemistry, 2001, 49, 3553-3558.	2.4	234
39	Manipulation of Endogenous Trypsin Proteinase Inhibitor Production in Nicotiana attenuata Demonstrates Their Function as Antiherbivore Defenses. Plant Physiology, 2004, 134, 1181-1190.	2.3	231
40	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. IV. Insect-Induced Ethylene Reduces Jasmonate-Induced Nicotine Accumulation by Regulating Putrescine N-Methyltransferase Transcripts,. Plant Physiology, 2001, 125, 2189-2202.	2.3	225
41	Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis inNicotiana sylvestris spegazzini and comes. Journal of Chemical Ecology, 1994, 20, 2139-2157.	0.9	223
42	Silencing Threonine Deaminase and JAR4 in Nicotiana attenuata Impairs Jasmonic Acid–Isoleucine–Mediated Defenses against Manduca sexta. Plant Cell, 2006, 18, 3303-3320.	3.1	222
43	Herbivoryâ€induced signalling in plants: perception and action. Plant, Cell and Environment, 2009, 32, 1161-1174.	2.8	221
44	Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses. PLoS ONE, 2008, 3, e2702.	1.1	220
45	Insects Betray Themselves in Nature to Predators by Rapid Isomerization of Green Leaf Volatiles. Science, 2010, 329, 1075-1078.	6.0	218
46	Herbivore-associated elicitors: FAC signaling and metabolism. Trends in Plant Science, 2011, 16, 294-299.	4.3	216
47	Dimethyl Disulfide Produced by the Naturally Associated Bacterium Bacillus sp B55 Promotes Nicotiana attenuata Growth by Enhancing Sulfur Nutrition. Plant Cell, 2013, 25, 2731-2747.	3.1	211
48	Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Reports, 2004, 23, 263-271.	2.8	208
49	R2R3-NaMYB8 Regulates the Accumulation of Phenylpropanoid-Polyamine Conjugates, Which Are Essential for Local and Systemic Defense against Insect Herbivores in <i>Nicotiana attenuata</i> . Plant Physiology, 2010, 152, 1731-1747.	2.3	207
50	Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1607-1612.	3.3	202
51	Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobaccoNicotiana attenuata. Plant Journal, 2004, 38, 639-649.	2.8	200
52	Mechanism of damage-induced alkaloid production in wild tobacco. Journal of Chemical Ecology, 1989, 15, 1661-1680.	0.9	199
53	The role of <i>cis</i> -zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany, 2015, 66, 4873-4884.	2.4	197
54	Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant, Cell and Environment, 2004, 27, 1362-1373.	2.8	196

#	Article	IF	CITATIONS
55	An Ecologically Motivated Analysis of Plant-Herbivore Interactions in Native Tobacco. Plant Physiology, 2001, 127, 1449-1458.	2.3	195
56	Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecology Letters, 2007, 10, 499-511.	3.0	190
57	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. VI. Microarray Analysis Reveals That Most Herbivore-Specific Transcriptional Changes Are Mediated by Fatty Acid-Amino Acid Conjugates,. Plant Physiology, 2003, 131, 1894-1902.	2.3	187
58	Up in smoke: I. Smoke-derived germination cues for postfire annual,Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 1994, 20, 2345-2371.	0.9	186
59	Trichome-derived <i>O</i> -acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7855-7859.	3.3	182
60	Volatile signaling in plant–plant–herbivore interactions: what is real?. Current Opinion in Plant Biology, 2002, 5, 351-354.	3.5	181
61	Transport of [2- 14 C]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta, 1997, 203, 436-441.	1.6	177
62	Convergent Responses to Stress. Solar Ultraviolet-B Radiation and Manduca sexta Herbivory Elicit Overlapping Transcriptional Responses in Field-Grown Plants of Nicotiana longiflora. Plant Physiology, 2003, 132, 1755-1767.	2.3	175
63	Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. VII. Changes in the Plant's Proteome. Plant Physiology, 2006, 142, 1621-1641.	2.3	174
64	Jasmonate-Dependent and -Independent Pathways Mediate Specific Effects of Solar Ultraviolet B Radiation on Leaf Phenolics and Antiherbivore Defense Â. Plant Physiology, 2010, 152, 1084-1095.	2.3	172
65	Remote sensing of future competitors: Impacts on plant defenses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7170-7174.	3.3	171
66	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata: V. Microarray Analysis and Further Characterization of Large-Scale Changes in Herbivore-Induced mRNAs. Plant Physiology, 2003, 131, 1877-1893.	2.3	170
67	Jasmonate and ppHsystemin Regulate Key Malonylation Steps in the Biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an Abundant and Effective Direct Defense against Herbivores in <i>Nicotiana attenuata</i> Â. Plant Cell, 2010, 22, 273-292.	3.1	170
68	Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. ELife, 2012, 1, e00007.	2.8	167
69	Merging molecular and ecological approaches in plant–insect interactions. Current Opinion in Plant Biology, 2001, 4, 351-358.	3.5	165
70	Defence on demand: mechanisms behind optimal defence patterns. Annals of Botany, 2012, 110, 1503-1514.	1.4	165
71	Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant Journal, 2004, 38, 650-663.	2.8	164
72	Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6133-6138.	3.3	160

#	Article	IF	CITATIONS
73	Deciphering the Role of Ethylene in Plant–Herbivore Interactions. Journal of Plant Growth Regulation, 2007, 26, 201-209.	2.8	155
74	Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant Journal, 2004, 40, 35-46.	2.8	154
75	Solar Ultraviolet-B Radiation and Insect Herbivory Trigger Partially Overlapping Phenolic Responses in Nicotiana attenuata and Nicotiana longiflora. Annals of Botany, 2007, 99, 103-109.	1.4	153
76	Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-Silenced Plants Reveal That Jasmonic Acid and Jasmonic Acid-Amino Acid Conjugates Play Different Roles in Herbivore Resistance of <i>Nicotiana attenuata</i> Â Â. Plant Physiology, 2008, 146, 904-915.	2.3	153
77	Leafâ€herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytologist, 2013, 200, 1234-1246.	3.5	150
78	Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biology and Biochemistry, 1983, 15, 419-423.	4.2	145
79	Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR. BMC Biotechnology, 2004, 4, 14.	1.7	145
80	Stem-piped light activates phytochrome B to trigger light responses in <i>Arabidopsis thaliana</i> roots. Science Signaling, 2016, 9, ra106.	1.6	145
81	Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nature Communications, 2018, 9, 2683.	5.8	145
82	OPTIMAL DEFENSE THEORY PREDICTS THE ONTOGENY OF AN INDUCED NICOTINE DEFENSE. Ecology, 2000, 81, 1765-1783.	1.5	144
83	An analysis of plant-aphid interactions by different microarray hybridization strategies. Molecular Ecology, 2004, 13, 3187-3195.	2.0	144
84	Using â€~mute' plants to translate volatile signals. Plant Journal, 2006, 45, 275-291.	2.8	144
85	The chemistry of defense and apparency in the corollas ofNicotiana attenuata. Oecologia, 1996, 107, 102-112.	0.9	143
86	The alkaloidal responses of wild tobacco to real and simulated herbivory. Oecologia, 1988, 77, 378-381.	0.9	141
87	Tuning the herbivoreâ€induced ethylene burst: the role of transcript accumulation and ethylene perception in <i>Nicotiana attenuata</i> . Plant Journal, 2007, 51, 293-307.	2.8	140
88	<i>Petunia</i> flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecology Letters, 2013, 16, 299-306.	3.0	138
89	Taking Ecological Function Seriously: Soil Microbial Communities Can Obviate Allelopathic Effects of Released Metabolites. PLoS ONE, 2009, 4, e4700.	1.1	137
90	Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta, 1999, 209, 87-95.	1.6	136

#	Article	IF	CITATIONS
91	Inducible Nicotine Production in Native Nicotiana as an Example of Adaptive Phenotypic Plasticity. Journal of Chemical Ecology, 1999, 25, 3-30.	0.9	135
92	Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta, 2007, 226, 159-167.	1.6	133
93	Changing Pollinators as a Means of Escaping Herbivores. Current Biology, 2010, 20, 237-242.	1.8	132
94	Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA?. Planta, 2008, 227, 1161-1168.	1.6	131
95	<i>Nicotiana attenuata LECTIN RECEPTOR KINASE1</i> Suppresses the Insect-Mediated Inhibition of Induced Defense Responses during <i>Manduca sexta</i> Herbivory Â. Plant Cell, 2011, 23, 3512-3532.	3.1	131
96	Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia, 2005, 146, 234-243.	0.9	129
97	MYB8 Controls Inducible Phenolamide Levels by Activating Three Novel Hydroxycinnamoyl-Coenzyme A:Polyamine Transferases in <i>Nicotiana attenuata</i> Â Â. Plant Physiology, 2012, 158, 389-407.	2.3	129
98	Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata. Plant Physiology, 2004, 135, 496-506.	2.3	128
99	High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of <i><scp>N</scp>icotiana attenuata</i> stems. Plant Journal, 2013, 73, 591-606.	2.8	127
100	ECOLOGICAL COSTS AND BENEFITS CORRELATED WITH TRYPSIN PROTEASE INHIBITOR PRODUCTION IN NICOTIANA ATTENUATA. Ecology, 2003, 84, 79-90.	1.5	125
101	Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in <i>Nicotiana attenuata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4559-4564.	3.3	125
102	The Reproductive Consequences Associated with Inducible Alkaloidal Responses in Wild Tobacco. Ecology, 1990, 71, 252-262.	1.5	124
103	<i>Empoasca</i> leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1548-57.	3.3	124
104	Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biology, 2014, 14, 136.	1.6	123
105	Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions?. Plant Journal, 2006, 46, 948-960.	2.8	121
106	Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores Â. Plant Physiology, 2006, 140, 1126-1136.	2.3	121
107	Tobacco Rattle Virus Vector: A Rapid and Transient Means of Silencing Manduca sexta Genes by Plant Mediated RNA Interference. PLoS ONE, 2012, 7, e31347.	1.1	121
108	RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant Journal, 2007, 50, 40-53.	2.8	120

#	Article	IF	CITATIONS
109	Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. Journal of Experimental Botany, 2003, 55, 151-157.	2.4	119
110	SEASONAL AND INDIVIDUAL VARIATION IN LEAF QUALITY OF TWO NORTHERN HARDWOODS TREE SPECIES. American Journal of Botany, 1982, 69, 753-759.	0.8	116
111	Short-term damage-induced increases in tobacco alkaloids protect plants. Oecologia, 1988, 75, 367-370.	0.9	116
112	Damage-induced alkaloids in tobacco: Pot-bound plants are not inducible. Journal of Chemical Ecology, 1988, 14, 1113-1120.	0.9	112
113	Lipase Activity in Insect Oral Secretions Mediates Defense Responses in Arabidopsis Â. Plant Physiology, 2011, 156, 1520-1534.	2.3	112
114	Natural history-driven, plant-mediated RNAi-based study reveals <i>CYP6B46</i> 's role in a nicotine-mediated antipredator herbivore defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1245-1252.	3.3	111
115	A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 2014, 15, 348.	1.2	111
116	Costs of jasmonate-induced responses in plants competing for limited resources. Ecology Letters, 1998, 1, 30-33.	3.0	110
117	Jasmonates and Related Compounds in Plant-Insect Interactions. Journal of Plant Growth Regulation, 2004, 23, 238-245.	2.8	110
118	Molecular mechanisms underlying plant memory in JAâ€mediated defence responses. Plant, Cell and Environment, 2009, 32, 617-627.	2.8	110
119	Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata. Functional Ecology, 2001, 15, 406-415.	1.7	107
120	Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecology Letters, 2004, 7, 770-775.	3.0	107
121	The Allometry of Nitrogen to Growth and an Inducible Defense under Nitrogen-Limited Growth. Ecology, 1994, 75, 995-1002.	1.5	105
122	Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore Attack in a Native Tobacco, Nicotiana attenuata. PLoS ONE, 2011, 6, e26214.	1.1	105
123	<i>Nicotiana attenuata</i> SIPK, WIPK, NPR1, and Fatty Acid-Amino Acid Conjugates Participate in the Induction of Jasmonic Acid Biosynthesis by Affecting Early Enzymatic Steps in the Pathway. Plant Physiology, 2009, 152, 96-106.	2.3	104
124	Eating the evidence? Manduca sexta larvae can not disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption. Planta, 2000, 210, 343-346.	1.6	102
125	Specificity in Ecological Interactions. Attack from the Same Lepidopteran Herbivore Results in Species-Specific Transcriptional Responses in Two Solanaceous Host Plants. Plant Physiology, 2005, 138, 1763-1773.	2.3	102
126	Molecular Interactions between the Specialist Herbivore <i>Manduca sexta</i> (Lepidoptera,) Tj ETQq0 0 0 rgBT	/Overlock 2.3	10 Tf 50 67 102

the Plant's Elicited Volatile Emissions Â. Plant Physiology, 2009, 149, 1408-1423.

#	Article	IF	CITATIONS
127	Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. II. Accumulation of Plant mRNAs in Response to Insect-Derived Cues. Plant Physiology, 2001, 125, 701-710.	2.3	101
128	A robust, simple, highâ€ŧhroughput technique for timeâ€resolved plant volatile analysis in field experiments. Plant Journal, 2014, 78, 1060-1072.	2.8	101
129	Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata. Phytochemistry, 2001, 58, 729-738.	1.4	100
130	Increased SA in <i>NPR1â€</i> silenced plants antagonizes JA and JAâ€dependent direct and indirect defenses in herbivoreâ€attacked <i>Nicotiana attenuata</i> in nature. Plant Journal, 2007, 52, 700-715.	2.8	97
131	Unbiased Transcriptional Comparisons of Generalist and Specialist Herbivores Feeding on Progressively Defenseless Nicotiana attenuata Plants. PLoS ONE, 2010, 5, e8735.	1.1	95
132	Silencing <i>Nicotiana attenuata</i> Calcium-Dependent Protein Kinases, <i>CDPK4</i> and <i>CDPK5</i> , Strongly Up-Regulates Wound- and Herbivory-Induced Jasmonic Acid Accumulations Â. Plant Physiology, 2012, 159, 1591-1607.	2.3	94
133	Silencing <i>MPK4</i> in <i>Nicotiana attenuata</i> Enhances Photosynthesis and Seed Production But Compromises Abscisic Acid-Induced Stomatal Closure and Guard Cell-Mediated Resistance to <i>Pseudomonas syringae</i> pv <i>tomato</i> DC3000 Â. Plant Physiology, 2012, 158, 759-776.	2.3	93
134	The structure of the culturable root bacterial endophyte community of <i>Nicotiana attenuata</i> is organized by soil composition and host plant ethylene production and perception. New Phytologist, 2010, 185, 554-567.	3.5	92
135	Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in <i>Nicotiana attenuata</i> . Plant Journal, 2012, 71, 529-538.	2.8	90
136	Immunological "Memory" in the Induced Accumulation of Nicotine in Wild Tobacco. Ecology, 1996, 77, 236-246.	1.5	89
137	Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by <i>Nicotiana attenuata</i> plants in a native population. New Phytologist, 2009, 183, 1134-1148.	3.5	89
138	Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants. Proceedings of the United States of America, 2003, 100, 14581-14586.	3.3	88
139	Jasmonateâ€dependent depletion of soluble sugars compromises plant resistance to <i><scp>M</scp>anduca sexta</i> . New Phytologist, 2015, 207, 91-105.	3.5	88
140	NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in <i>Nicotiana attenuata</i> , is required for root hair development and plant growth in native soils. Plant Journal, 2007, 52, 877-890.	2.8	87
141	FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature Communications, 2014, 5, 5473.	5.8	87
142	HAHB4, a sunflower HDâ€Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant Journal, 2008, 56, 376-388.	2.8	85
143	Silencing Geranylgeranyl Diphosphate Synthase in <i>Nicotiana attenuata</i> Dramatically Impairs Resistance to Tobacco Hornworm Â. Plant Physiology, 2008, 146, 974-986.	2.3	85
144	Constraints on an induced defense: the role of leaf area. Oecologia, 1994, 97, 424-430.	0.9	84

#	Article	IF	CITATIONS
145	Jasmonoylâ€ <scp>l</scp> â€isoleucine hydrolase 1 (JIH1) regulates jasmonoylâ€ <scp>l</scp> â€isoleucine levels and attenuates plant defenses against herbivores. Plant Journal, 2012, 72, 758-767.	2.8	84
146	The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliaeinfection by downregulation plant defense responses. BMC Plant Biology, 2014, 14, 268.	1.6	84
147	High-throughput quantification of more than 100 primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based sample preparation with analysis by UHPLC–HESI–MS/MS. Plant Methods, 2016, 12, 30.	1.9	84
148	<i>O-</i> Acyl Sugars Protect a Wild Tobacco from Both Native Fungal Pathogens and a Specialist Herbivore. Plant Physiology, 2017, 174, 370-386.	2.3	84
149	Allocation of nitrogen to an inducible defense and seed production in Nicotiana attenuata. Oecologia, 1998, 115, 541-552.	0.9	83
150	Title is missing!. Journal of Chemical Ecology, 2000, 26, 915-952.	0.9	83
151	Individual variability in herbivore-specific elicitors from the plant's perspective. Molecular Ecology, 2004, 13, 2421-2433.	2.0	83
152	BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory. Journal of Experimental Botany, 2011, 62, 641-652.	2.4	83
153	Allocation of 15N from Nitrate to Nicotine: Production and Turnover of a Damage-Induced Mobile Defense. Ecology, 1994, 75, 1703-1713.	1.5	82
154	Coronalon: a powerful tool in plant stress physiology. FEBS Letters, 2004, 563, 17-22.	1.3	82
155	Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7610-E7618.	3.3	82
156	Effects of octadecanoid metabolites and inhibitors on induced nicotine accumulation inNicotiana sylvestris. Journal of Chemical Ecology, 1996, 22, 61-74.	0.9	80
157	Jasmonate Perception Regulates Jasmonate Biosynthesis and JA-Ile Metabolism: The Case of COI1 in Nicotiana attenuata. Plant and Cell Physiology, 2008, 49, 1165-1175.	1.5	80
158	Oxylipin channelling in <i>Nicotiana attenuata</i> : lipoxygenase 2 supplies substrates for green leaf volatile production. Plant, Cell and Environment, 2010, 33, 2028-2040.	2.8	80
159	Up in smoke: II. Germination ofNicotiana attenuata in response to smoke-derived cues and nutrients in burned and unburned soils. Journal of Chemical Ecology, 1994, 20, 2373-2391.	0.9	79
160	Serine Protease Inhibitors Specifically Defend <i>Solanum nigrum</i> against Generalist Herbivores but Do Not Influence Plant Growth and Development Â. Plant Cell, 2011, 22, 4158-4175.	3.1	79
161	Methyl jasmonateâ€induced nicotine production in Nicotiana attenuata : inducing defenses in the field without wounding. Entomologia Experimentalis Et Applicata, 1996, 80, 213-220.	0.7	78
162	Ectopic Expression of <i>AtJMT</i> in <i>Nicotiana attenuata</i> : Creating a Metabolic Sink Has Tissue-Specific Consequences for the Jasmonate Metabolic Network and Silences Downstream Gene Expression Â. Plant Physiology, 2011, 157, 341-354.	2.3	78

#	Article	IF	CITATIONS
163	Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants. Oecologia, 1993, 94, 534-541.	0.9	77
164	Jasmonic Acid and Ethylene Modulate Local Responses to Wounding and Simulated Herbivory in <i>Nicotiana attenuata</i> Leaves Â. Plant Physiology, 2010, 153, 785-798.	2.3	77
165	Systematic analysis of rice (<i>Oryza sativa</i>) metabolic responses to herbivory. Plant, Cell and Environment, 2016, 39, 453-466.	2.8	77
166	Hemoglobin as a binding substrate in the quantitative analysis of plant tannins. Journal of Agricultural and Food Chemistry, 1981, 29, 823-826.	2.4	75
167	Sebacina vermifera Promotes the Growth and Fitness of Nicotiana attenuata by Inhibiting Ethylene Signaling. Plant Physiology, 2007, 144, 1223-1232.	2.3	75
168	Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Annals of Botany, 2009, 103, 1207-1217.	1.4	75
169	Silencing two herbivoryâ€activated MAP kinases, SIPK and WIPK, does not increase <i>Nicotiana attenuata</i> 's susceptibility to herbivores in the glasshouse and in nature. New Phytologist, 2009, 181, 161-173.	3.5	75
170	MANDUCA QUINQUEMACULATA'S OPTIMIZATION OF INTRA-PLANT OVIPOSITION TO PREDATION, FOOD QUALITY, AND THERMAL CONSTRAINTS. Ecology, 2002, 83, 2346-2354.	1.5	72
171	NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in <i>Nicotiana attenuata</i> Plants Â. Plant Physiology, 2012, 159, 769-788.	2.3	72
172	The <i>HERBIVORE ELICITOR-REGULATED1</i> Gene Enhances Abscisic Acid Levels and Defenses against Herbivores in <i>Nicotiana attenuata</i> Plants. Plant Physiology, 2013, 162, 2106-2124.	2.3	72
173	Molecular dissection of rice phytohormone signaling involved in resistance to a piercingâ€sucking herbivore. New Phytologist, 2021, 230, 1639-1652.	3.5	72
174	Symbiosis between <i>Nicotiana attenuata</i> and <i>Glomus intraradices</i> : ethylene plays a role, jasmonic acid does not. Plant, Cell and Environment, 2008, 31, 1203-1213.	2.8	71
175	Silencing <i>Nicotiana attenuata <scp>LHY</scp></i> and <i><scp>ZTL</scp></i> alters circadian rhythms in flowers. New Phytologist, 2016, 209, 1058-1066.	3.5	71
176	Herbivoryâ€induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytologist, 2017, 215, 803-812.	3.5	71
177	Mechanisms of Optimal Defense Patterns in Nicotiana attenuata: Flowering Attenuates Herbivory-elicited Ethylene and Jasmonate SignalingF. Journal of Integrative Plant Biology, 2011, 53, 971-983.	4.1	70
178	Alternative Oxidase in Resistance to Biotic Stresses: <i>Nicotiana attenuata</i> AOX Contributes to Resistance to a Pathogen and a Piercing-Sucking Insect But Not <i>Manduca sexta</i> Larvae Â. Plant Physiology, 2012, 160, 1453-1467.	2.3	70
179	Revealing insect herbivoryâ€induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. Plant Journal, 2014, 79, 679-692	2.8	70
180	Alkaloidal responses to damage inNicotiana native to North America. Journal of Chemical Ecology, 1993, 19, 1143-1153.	0.9	69

#	Article	IF	CITATIONS
181	Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal?. Biochemical Systematics and Ecology, 2001, 29, 1007-1023.	0.6	69
182	S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. Journal of Experimental Botany, 2011, 62, 4605-4616.	2.4	69
183	Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent Defenses. Plant Physiology, 2016, 172, 521-532.	2.3	69
184	Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. ELife, 2018, 7, .	2.8	69
185	Occurrence of tetraploidy in Nicotiana attenuata plants after Agrobacterium-mediated transformation is genotype specific but independent of polysomaty of explant tissue. Plant Cell Reports, 2006, 25, 668-675.	2.8	68
186	A Comparison of Two <i>Nicotiana attenuata</i> Accessions Reveals Large Differences in Signaling Induced by Oral Secretions of the Specialist Herbivore <i>Manduca sexta</i> Â Â Â. Plant Physiology, 2008, 146, 927-939.	2.3	68
187	Development and Validation of a Liquid Chromatographyâ^'Electrospray Ionizationâ^'Time-of-Flight Mass Spectrometry Method for Induced Changes in Nicotiana attenuata Leaves during Simulated Herbivory. Journal of Agricultural and Food Chemistry, 2010, 58, 9418-9427.	2.4	68
188	HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. Journal of Experimental Botany, 2011, 62, 1061-1076.	2.4	68
189	Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked. BMC Ecology, 2004, 4, 11.	3.0	67
190	Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4147-55.	3.3	67
191	Tissue-Specific Emission of (E)-α-Bergamotene Helps Resolve the Dilemma When Pollinators Are Also Herbivores. Current Biology, 2017, 27, 1336-1341.	1.8	67
192	Patterns and Consequences of Benzyl Acetone Floral Emissions from Nicotiana attenuata Plants. Journal of Chemical Ecology, 1997, 23, 2327-2343.	0.9	66
193	Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. Journal of Experimental Botany, 2009, 60, 2631-2640.	2.4	66
194	Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. ELife, 2013, 2, e00421.	2.8	65
195	Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. Journal of Chemical Ecology, 2002, 28, 2343-2369.	0.9	64
196	Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata. Journal of Chemical Ecology, 2003, 29, 763-770.	0.9	64
197	Phytotoxic Volatiles in the Roots and Shoots of Artemisia tridentata as Detected by Headspace Solid-phase Microextraction and Gas Chromatographic-mass Spectrometry Analysis. Journal of Chemical Ecology, 2010, 36, 1398-1407.	0.9	64
198	Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 2004, 14, 51-60.	0.8	63

#	Article	IF	CITATIONS
199	Independently Silencing Two Photosynthetic Proteins in <i>Nicotiana attenuata</i> Has Different Effects on Herbivore Resistance Â. Plant Physiology, 2008, 148, 1128-1138.	2.3	62
200	Oral secretions from <i>Mythimna separata</i> insects specifically induce defence responses in maize as revealed by highâ€dimensional biological data. Plant, Cell and Environment, 2016, 39, 1749-1766.	2.8	61
201	How scent and nectar influence floral antagonists and mutualists. ELife, 2015, 4, .	2.8	61
202	Withinâ€plant relationships among wounding, jasmonic acid, and nicotine implications for defence in Nicotiana sylvestris. New Phytologist, 1997, 137, 441-452.	3.5	60
203	Patterns and sources of leaf tannin variation in yellow birch (Betula allegheniensis) and sugar maple (Acer saccharum). Journal of Chemical Ecology, 1987, 13, 1069-1078.	0.9	59
204	Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta. Chemoecology, 2001, 11, 121-126.	0.6	59
205	Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biology and Biochemistry, 2016, 96, 30-38.	4.2	59
206	MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics. BMC Plant Biology, 2012, 12, 213.	1.6	58
207	Jasmonoyl- <scp>l</scp> -lsoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (<i>Nicotiana attenuata</i>) Â Â. Plant Cell, 2014, 26, 3964-3983.	3.1	58
208	Stem parasitic plant <i>Cuscuta australis</i> (dodder) transfers herbivory-induced signals among plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6703-E6709.	3.3	58
209	POSITIVE AND NEGATIVE SIGNALS REGULATE GERMINATION IN THE POST-FIRE ANNUAL,NICOTIANA ATTENUATA. Ecology, 1999, 80, 481-494.	1.5	57
210	Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana) Tj ETQq0 0 0 rgBT /O	verlock 10 1.4	Tf 50 302 Td
211	Jasmonic acid signalling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata. Plant, Cell and Environment, 2006, 29, 1751-1760.	2.8	57
212	UVB radiation and 17â€hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (<i>Tupiocoris notatus</i>) attack in fieldâ€grown <i>Nicotiana attenuata</i> plants. Plant, Cell and Environment, 2013, 36, 590-606.	2.8	56
213	Root jasmonic acid synthesis and perception regulate folivoreâ€induced shoot metabolites and increase <i>Nicotiana attenuata</i> resistance. New Phytologist, 2014, 202, 1335-1345.	3.5	56
214	Hawkmoths evaluate scenting flowers with the tip of their proboscis. ELife, 2016, 5, .	2.8	56
215	Molecular technology reveals how the induced direct defenses of plants work. Basic and Applied Ecology, 2003, 4, 15-26.	1.2	55
216	Revealing complexity and specificity in the activation of lipaseâ€mediated oxylipin biosynthesis: a specific role of the <i>Nicotiana attenuata</i> GLA1 lipase in the activation of jasmonic acid biosynthesis in leaves and roots. Plant, Cell and Environment, 2011, 34, 1507-1520.	2.8	55

#	Article	IF	CITATIONS
217	Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7205-E7214.	3.3	55
218	A suite of complementary biocontrol traits allows a native consortium of rootâ€associated bacteria to protect their host plant from a fungal suddenâ€wilt disease. Molecular Ecology, 2019, 28, 1154-1169.	2.0	55
219	A Jasmonate ZIM-Domain Protein NaJAZd Regulates Floral Jasmonic Acid Levels and Counteracts Flower Abscission in Nicotiana attenuata Plants. PLoS ONE, 2013, 8, e57868.	1.1	55
220	Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2015, 57, 198-212.	4.1	54
221	Coordination of Photosynthetic and Alkaloidal Responses to Damage in Uninducible and Inducible Nicotiana Sylvestris. Ecology, 1994, 75, 1003-1014.	1.5	53
222	Controlled hydroxylations of diterpenoids allow for plant chemical defense without autotoxicity. Science, 2021, 371, 255-260.	6.0	53
223	An Ecological Analysis of the Herbivory-Elicited JA Burst and Its Metabolism: Plant Memory Processes and Predictions of the Moving Target Model. PLoS ONE, 2009, 4, e4697.	1.1	52
224	Fast track to the trichome: induction of N-acyl nornicotines precedes nicotine induction in Nicotiana repanda. Planta, 2000, 210, 510-514.	1.6	51
225	Solanum nigrum: A model ecological expression system and its tools. Molecular Ecology, 2004, 13, 981-995.	2.0	51
226	SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses. BMC Plant Biology, 2010, 10, 66.	1.6	51
227	Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient <i>Nicotiana attenuata</i> Plants to Compensate for their Structural Deficiencies Â. Plant Physiology, 2012, 159, 1545-1570.	2.3	51
228	<i>Nicotiana attenuata </i> <scp>MPK</scp> 4 suppresses a novel jasmonic acid (<scp>JA</scp>) signalingâ€independent defense pathway against the specialist insect <i>Manduca sexta</i> , but is not required for the resistance to the generalist <i>Spodoptera littoralis</i> . New Phytologist, 2013, 199, 787-799.	3.5	51
229	Herbivoreâ€induced volatile blends with both "fast―and "slow―components provide robust indirect defence in nature. Functional Ecology, 2018, 32, 136-149.	1.7	51
230	Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata. Ecological Entomology, 2001, 26, 578-586.	1.1	50
231	A pleiotropic drug resistance transporter in <i>Nicotiana tabacum</i> is involved in defense against the herbivore <i>Manduca sexta</i> . Plant Journal, 2012, 72, 745-757.	2.8	50
232	Ru <scp>BPC</scp> ase activase (<scp>RCA</scp>) mediates growth–defense tradeâ€offs: silencing <scp>RCA</scp> redirects jasmonic acid (<scp>JA</scp>) flux from <scp>JA</scp> â€isoleucine to methyl jasmonate (Me <scp>JA</scp>) to attenuate induced defense responses in <i>Nicotiana attenuata</i> . New Phytologist, 2014, 201, 1385-1395.	3.5	50
233	SEASONAL AND INDIVIDUAL VARIATION IN LEAF QUALITY OF TWO NORTHERN HARDWOODS TREE SPECIES. , 1982, 69, 753.		50
234	Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. ELife, 2015, 4, .	2.8	50

#	Article	IF	CITATIONS
235	Herbivore-induced ethylene burst reduces fitness costs of jasmonate- and oral secretion-induced defenses in Nicotiana attenuata. Oecologia, 2001, 127, 274-280.	0.9	49
236	ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah. BMC Ecology, 2004, 4, 12.	3.0	49
237	Molecular evolution and diversification of the Argonaute family of proteins in plants. BMC Plant Biology, 2015, 15, 23.	1.6	49
238	Optimized virusâ€induced gene silencing in <i>Solanum nigrum</i> reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytologist, 2008, 179, 356-365.	3.5	48
239	Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species. BMC Plant Biology, 2015, 15, 2.	1.6	48
240	Multiple Routes of Light Signaling during Root Photomorphogenesis. Trends in Plant Science, 2017, 22, 803-812.	4.3	48
241	Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. ELife, 2016, 5, .	2.8	48
242	Plant–Plant Signaling: Application of trans- or cis-Methyl Jasmonate Equivalent to Sagebrush Releases Does Not Elicit Direct Defenses in Native Tobacco. Journal of Chemical Ecology, 2004, 30, 2193-2214.	0.9	47
243	Silencing RNAâ€directed RNA polymerase 2 increases the susceptibility of <i>Nicotiana attenuata</i> to UV in the field and in the glasshouse. Plant Journal, 2008, 54, 845-862.	2.8	47
244	Efficient screening of transgenic plant lines for ecological research. Molecular Ecology Resources, 2011, 11, 890-902.	2.2	47
245	Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biology, 2013, 13, 99.	1.6	47
246	An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. Journal of Experimental Botany, 2019, 70, 5895-5908.	2.4	47
247	Plasticity in allocation of nicotine to reproductive parts inNicotiana attenuata. Journal of Chemical Ecology, 1995, 21, 897-909.	0.9	46
248	Silencing jasmonate signalling and jasmonateâ€mediated defences reveals different survival strategies between two <i>Nicotiana attenuata</i> accessions. Molecular Ecology, 2008, 17, 3717-3732.	2.0	46
249	Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants. BMC Genomics, 2016, 17, 1005.	1.2	46
250	<i>EOBII</i> Controls Flower Opening by Functioning as a General Transcriptomic Switch Â. Plant Physiology, 2011, 156, 974-984.	2.3	45
251	New opportunities at the wild frontier. ELife, 2015, 4, .	2.8	44
252	Swords into plowshares? Nicotiana sylvestris does not use nicotine as a nitrogen source under nitrogen-limited growth. Oecologia, 1994, 98, 385-392.	0.9	43

#	Article	IF	CITATIONS
253	Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual,Nicotiana attenuata. Seed Science Research, 2002, 12, 239-252.	0.8	43
254	Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages. PLoS ONE, 2014, 9, e94710.	1.1	43
255	Methyl jasmonate and cis-jasmone do not dispose of the herbivore-induced jasmonate burst in Nicotiana attenuata. Physiologia Plantarum, 2004, 120, 474-481.	2.6	42
256	Evolution of proteinase inhibitor defenses in North American allopolyploid species of Nicotiana. Planta, 2006, 224, 750-760.	1.6	42
257	Diverting the Flux of the JA Pathway in Nicotiana attenuata Compromises the Plant's Defense Metabolism and Fitness in Nature and Classhouse. PLoS ONE, 2011, 6, e25925.	1.1	42
258	Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of Experimental Botany, 2011, 62, 4355-4365.	2.4	42
259	The multiple functions of plant serine protease inhibitors. Plant Signaling and Behavior, 2011, 6, 1009-1011.	1.2	42
260	<i>Arabidopsis</i> Plants Having Defects in Nonsenseâ€mediated mRNA Decay Factors UPF1, UPF2, and UPF3 Show Photoperiodâ€dependent Phenotypes in Development and Stress Responses. Journal of Integrative Plant Biology, 2012, 54, 99-114.	4.1	42
261	Using the knowns to discover the unknowns: <scp>MS</scp> â€based dereplication uncovers structural diversity in 17â€hydroxygeranyllinalool diterpene glycoside production in the Solanaceae. Plant Journal, 2016, 85, 561-577.	2.8	42
262	<i>Cuscuta australis</i> (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23125-23130.	3.3	42
263	Detecting herbivore-specific transcriptional responses in plants with multiple DDRT-PCR and subtractive library procedures. Physiologia Plantarum, 2003, 118, 240-252.	2.6	41
264	NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biology, 2013, 13, 73.	1.6	41
265	The effect of polyploidy and hybridization on the evolution of floral colour in <i>Nicotiana</i> (Solanaceae). Annals of Botany, 2015, 115, 1117-1131.	1.4	41
266	An unbiased approach elucidates variation in (<i>S</i>)-(+)-linalool, a context-specific mediator of a tri-trophic interaction in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14651-14660.	3.3	41
267	An Endophytic Trichoderma Strain Promotes Growth of Its Hosts and Defends Against Pathogen Attack. Frontiers in Plant Science, 2020, 11, 573670.	1.7	41
268	Nonsense-mediated mRNA decay (NMD) silences the accumulation of aberrant trypsin proteinase inhibitor mRNA in Nicotiana attenuata. Plant Journal, 2007, 51, 693-706.	2.8	40
269	Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. Journal of Experimental Botany, 2011, 62, 155-166.	2.4	40
270	<i>Narboh D</i> , a Respiratory Burst Oxidase Homolog in <i>Nicotiana attenuata</i> , is Required for Late Defense Responses After Herbivore Attack ^F . Journal of Integrative Plant Biology, 2013, 55, 187-198.	4.1	40

#	Article	IF	CITATIONS
271	Insect herbivory elicits genomeâ€wide alternative splicing responses in <i><scp>N</scp>icotiana attenuata</i> . Plant Journal, 2015, 84, 228-243.	2.8	40
272	Natural history–guided omics reveals plant defensive chemistry against leafhopper pests. Science, 2022, 375, eabm2948.	6.0	40
273	Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry, 2002, 60, 109-116.	1.4	39
274	Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata. Journal of Experimental Botany, 2007, 58, 4071-4082.	2.4	39
275	The ecogenetics and ecogenomics of plant–herbivore interactions: rapid progress on a slippery road. Current Opinion in Genetics and Development, 2007, 17, 519-524.	1.5	39
276	Natural variation in floral nectar proteins of two Nicotiana attenuata accessions. BMC Plant Biology, 2013, 13, 101.	1.6	39
277	Quantification of growth–defense tradeâ€offs in a common currency: nitrogen required for phenolamide biosynthesis is not derived from ribuloseâ€1,5â€bisphosphate carboxylase/oxygenase turnover. Plant Journal, 2013, 75, 417-429.	2.8	39
278	Fire, nitrogen, and defensive plasticity in. Oecologia, 1998, 115, 531.	0.9	39
279	Nicotiana tabacum agglutinin is active against Lepidopteran pest insects. Journal of Experimental Botany, 2010, 61, 1003-1014.	2.4	38
280	C ₁₂ derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenaseâ€2 in <i>Nicotiana attenuata</i> leaves. New Phytologist, 2011, 191, 1054-1068.	3.5	38
281	A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature. Frontiers in Plant Science, 2012, 3, 112.	1.7	38
282	DICERâ€like Proteins and Their Role in Plantâ€herbivore Interactions in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2012, 54, 189-206.	4.1	38
283	Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore. PLoS ONE, 2014, 9, e86500.	1.1	38
284	A <i>Nicotiana attenuata</i> cell wall invertase inhibitor (Na <scp>CWII</scp>) reduces growth and increases secondary metabolite biosynthesis in herbivoreâ€attacked plants. New Phytologist, 2015, 208, 519-530.	3.5	38
285	Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nature Communications, 2015, 6, 8525.	5.8	38
286	Induced Defenses and the Cost-Benefit Paradigm. , 2008, , 61-83.		37
287	SCT1 regulates wounding―and herbivoryâ€induced jasmonic acid accumulation and <i>Nicotiana attenuata</i> 's resistance to the specialist lepidopteran herbivore <i>Manduca sexta</i> . New Phytologist, 2011, 189, 1143-1156.	3.5	36
288	Positive and Negative Signals Regulate Germination in the Post-Fire Annual, Nicotiana attenuata. Ecology, 1999, 80, 481.	1.5	35

#	Article	IF	CITATIONS
289	Systemin in Solanum nigrum. The Tomato-Homologous Polypeptide Does Not Mediate Direct Defense Responses. Plant Physiology, 2006, 142, 1751-1758.	2.3	35
290	Regulation of jasmonate metabolism and activation of systemic signaling in <i>Solanum nigrum</i> : COI1 and JAR4 play overlapping yet distinct roles. New Phytologist, 2011, 190, 640-652.	3.5	35
291	WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biology, 2015, 15, 305.	1.6	35
292	Nicotiana attenuata Data Hub (NaDH): an integrative platform for exploring genomic, transcriptomic and metabolomic data in wild tobacco. BMC Genomics, 2017, 18, 79.	1.2	35
293	Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. BMC Plant Biology, 2017, 17, 199.	1.6	35
294	Differential Elicitation of Two Processing Proteases Controls the Processing Pattern of the Trypsin Proteinase Inhibitor Precursor in Nicotiana attenuata. Plant Physiology, 2005, 139, 375-388.	2.3	34
295	Novel Rearranged Abietane Diterpenoids from the Roots ofSalvia sahendica. Chemistry and Biodiversity, 2006, 3, 916-922.	1.0	34
296	Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves. BMC Plant Biology, 2010, 10, 164.	1.6	34
297	Deciphering Herbivory-Induced Gene-to-Metabolite Dynamics in Nicotiana attenuata Tissues Using a Multifactorial Approach Â. Plant Physiology, 2013, 162, 1042-1059.	2.3	34
298	Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 790-798.	2.8	34
299	Information theory tests critical predictions of plant defense theory for specialized metabolism. Science Advances, 2020, 6, eaaz0381.	4.7	34
300	Damage-induced root nitrogen metabolism inNicotiana sylvestris: Testing C/N predictions for alkaloid production. Journal of Chemical Ecology, 1993, 19, 3029-3043.	0.9	33
301	A simple and efficient micrografting method for stably transformed Nicotiana attenuata plants to examine shoot-root signaling. Plant Methods, 2011, 7, 34.	1.9	33
302	Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. Organic and Biomolecular Chemistry, 2015, 13, 5885-5893.	1.5	33
303	Silencing a key gene of the common symbiosis pathway in <scp><i>N</i></scp> <i>icotiana attenuata</i> specifically impairs arbuscular mycorrhizal infection without influencing the rootâ€associated microbiome or plant growth. Plant, Cell and Environment, 2015, 38, 2398-2416.	2.8	33
304	The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature. Frontiers in Plant Science, 2018, 9, 787.	1.7	33
305	Cytokinin concentrations and CHASEâ€ÐOMAIN CONTAINING HIS KINASE 2 (NaCHK2)―and <scp>N</scp> a <scp>CHK</scp> 3â€mediated perception modulate herbivoryâ€induced defense signaling and defenses in <i><scp>N</scp>icotiana attenuata</i> . New Phytologist, 2015, 207, 645-658.	3.5	32
306	What happens in the pith stays in the pith: tissueâ€localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant Journal, 2017, 92, 414-425.	2.8	32

#	Article	IF	CITATIONS
307	Reverse Genetics in Ecological Research. PLoS ONE, 2008, 3, e1543.	1.1	32
308	Digestive Duet: Midgut Digestive Proteinases of Manduca sexta Ingesting Nicotiana attenuata with Manipulated Trypsin Proteinase Inhibitor Expression. PLoS ONE, 2008, 3, e2008.	1.1	32
309	Phylogeny and the patterns of leaf phenolics in gap-and forest-adapted Piper and Miconia understory shrubs. Oecologia, 1988, 75, 105-109.	0.9	31
310	JA but not JAâ€lle is the cellâ€nonautonomous signal activating JA mediated systemic defenses to herbivory in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2017, 59, 552-571.	4.1	31
311	The decoration of specialized metabolites influences stylar development. ELife, 2018, 7, .	2.8	31
312	Innovation in anti-herbivore defense systems during neopolypoloidy - the functional consequences of instantaneous speciation. Plant Journal, 2006, 47, 196-210.	2.8	30
313	Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors. Plant Physiology, 2014, 166, 779-797.	2.3	30
314	Argonaute 8 (AGO8) Mediates the Elicitation of Direct Defenses against Herbivory. Plant Physiology, 2017, 175, 927-946.	2.3	30
315	Priming and filtering of antiherbivore defences among <scp><i>Nicotiana attenuata</i></scp> plants connected by mycorrhizal networks. Plant, Cell and Environment, 2019, 42, 2945-2961.	2.8	30
316	Opportunistic out-crossing in Nicotiana attenuata (Solanaceae), a predominantly self-fertilizing native tobacco. BMC Ecology, 2003, 3, 6.	3.0	29
317	Using nutritional indices to study LOX3-dependent insect resistance. Plant, Cell and Environment, 2006, 29, 1585-1594.	2.8	29
318	<i>RNA-Directed RNA Polymerase3</i> from <i>Nicotiana attenuata</i> ls Required for Competitive Growth in Natural Environments Â. Plant Physiology, 2008, 147, 1212-1224.	2.3	29
319	Herbivoreâ€induced jasmonic acid bursts in leaves of <i>Nicotiana attenuata</i> mediate shortâ€ŧerm reductions in root growth. Plant, Cell and Environment, 2009, 32, 134-143.	2.8	29
320	A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS. Plant Methods, 2009, 5, 17.	1.9	29
321	The role of jasmonic acid and ethylene crosstalk in direct defense of <i>Nicotiana attenuata</i> plants against chewing herbivores. Plant Signaling and Behavior, 2010, 5, 1305-1307.	1.2	29
322	Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC Plant Biology, 2012, 12, 209.	1.6	29
323	Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC Plant Biology, 2012, 12, 217.	1.6	29
324	â€~Real time' genetic manipulation: a new tool for ecological field studies. Plant Journal, 2013, 76, 506-518.	2.8	29

#	Article	IF	CITATIONS
325	Pyridine-type alkaloid composition affects bacterial community composition of floral nectar. Scientific Reports, 2015, 5, 11536.	1.6	29
326	Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12â€oxoâ€phytodienoic acid, mitogenâ€activated protein kinase 4 and cytokinin perception. Plant, Cell and Environment, 2017, 40, 1039-1056.	2.8	29
327	Fitness consequences of altering floral circadian oscillations for <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2017, 59, 180-189.	4.1	29
328	Transcriptional regulation of plant inducible defenses against herbivores: a mini-review. Journal of Plant Interactions, 2011, 6, 113-119.	1.0	28
329	Isolating Fungal Pathogens from a Dynamic Disease Outbreak in a Native Plant Population to Establish Plant-Pathogen Bioassays for the Ecological Model Plant Nicotiana attenuata. PLoS ONE, 2014, 9, e102915.	1.1	28
330	Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in <i>Nicotiana attenuata</i> . Plant Journal, 2017, 89, 15-30.	2.8	28
331	ZEITLUPE in the Roots of Wild Tobacco Regulates Jasmonate-Mediated Nicotine Biosynthesis and Resistance to a Generalist Herbivore. Plant Physiology, 2018, 177, 833-846.	2.3	28
332	Chemical ecology in the molecular era. Trends in Plant Science, 1998, 3, 362-365.	4.3	27
333	Transcriptional responses ofSolanum nigrumto methyl jasmonate and competition: a glasshouse and field study. Functional Ecology, 2006, 20, 500-508.	1.7	27
334	Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis. Plant Methods, 2010, 6, 14.	1.9	27
335	JA-Ile-macrolactones uncouple growth and defense in wild tobacco. Organic and Biomolecular Chemistry, 2017, 15, 3391-3395.	1.5	27
336	Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation. Plant, Cell and Environment, 2018, 41, 797-808.	2.8	27
337	Long nonâ€coding <scp>RNAs</scp> associate with jasmonateâ€mediated plant defence against herbivores. Plant, Cell and Environment, 2021, 44, 982-994.	2.8	27
338	<i>PR-13/Thionin</i> But Not <i>PR-1</i> Mediates Bacterial Resistance in <i>Nicotiana attenuata</i> in Nature, and Neither Influences Herbivore Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 988-1000.	1.4	26
339	Silencing <i>NOA1</i> Elevates Herbivoryâ€Induced Jasmonic Acid Accumulation and Compromises Most of the Carbonâ€Based Defense Metabolites in <i>Nicotiana attenuata</i> ^F . Journal of Integrative Plant Biology, 2011, 53, 619-631.	4.1	26
340	Pithy Protection: <i>Nicotiana attenuata</i> 's Jasmonic Acid-Mediated Defenses Are Required to Resist Stem-Boring Weevil Larvae Â. Plant Physiology, 2011, 155, 1936-1946.	2.3	26
341	<i>Nicotiana attenuata αâ€<scp>DIOXYGENASE</scp>1</i> through its production of 2â€hydroxylinolenic acid is required for intact plant defense expression against attack from <i>Manduca sexta</i> larvae. New Phytologist, 2012, 196, 574-585.	3.5	26
342	Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata. BMC Plant Biology, 2012, 12, 172.	1.6	26

#	Article	IF	CITATIONS
343	The postâ€pollination ethylene burst and the continuation of floral advertisement are harbingers of nonâ€random mate selection in <i>Nicotiana attenuata</i> . Plant Journal, 2012, 71, 587-601.	2.8	26
344	Cytotoxic activity and chemical constituents of <i>Anthemis mirheydari</i> . Pharmaceutical Biology, 2016, 54, 2044-2049.	1.3	26
345	Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen speciesâ€mediated redox signaling. New Phytologist, 2017, 213, 1755-1770.	3.5	26
346	Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant Journal, 2012, 72, 162-172.	2.8	25
347	Just in time. Plant Signaling and Behavior, 2013, 8, e24410.	1.2	25
348	Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis inNicotiana attenuata. Plant Signaling and Behavior, 2013, 8, e22784.	1.2	25
349	Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC Plant Biology, 2014, 14, 326.	1.6	25
350	Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant, Cell and Environment, 2019, 42, 972-982.	2.8	25
351	Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. ELife, 2016, 5, .	2.8	25
352	Structural Requirements of Jasmonates and Mimics for Nicotine Induction inNicotiana sylvestris. Journal of Chemical Ecology, 1997, 23, 2777-2789.	0.9	24
353	Is â€~NO' news good news? Nitrogen oxides are not components of smoke that elicits germination in two smoke-stimulated species, Nicotiana attenuata and Emmenanthe penduliflora. Seed Science Research, 2004, 14, 73-79.	0.8	24
354	17-Hydroxygeranyllinalool glycosides are major resistance traits of Nicotiana obtusifolia against attack from tobacco hornworm larvae. Phytochemistry, 2010, 71, 1115-1121.	1.4	24
355	The roots of plant defenses: integrative multivariate analyses uncover dynamic behaviors of gene and metabolic networks of roots elicited by leaf herbivory. Plant Journal, 2014, 77, 880-892.	2.8	24
356	<i>Nicotiana attenuata</i> 's capacity to interact with arbuscular mycorrhiza alters its competitive ability and elicits major changes in the leaf transcriptome. Journal of Integrative Plant Biology, 2018, 60, 242-261.	4.1	24
357	Field studies reveal functions of chemical mediators in plant interactions. Chemical Society Reviews, 2018, 47, 5338-5353.	18.7	24
358	Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects. ELife, 2018, 7, .	2.8	24
359	Down-regulation of systemin after herbivory is associated with increased root allocation and competitive ability in Solanum nigrum. Oecologia, 2009, 159, 473-482.	0.9	23
360	Specificity of root microbiomes in nativeâ€grown <i>Nicotiana attenuata</i> and plant responses to <scp>UVB</scp> increase <i>Deinococcus</i> colonization. Molecular Ecology, 2017, 26, 2543-2562.	2.0	23

#	Article	IF	CITATIONS
361	The defensive function of a pollinatorâ€attracting floral volatile. Functional Ecology, 2019, 33, 1223-1232.	1.7	23
362	Pithâ€specific lignification in <i>Nicotiana attenuata</i> as a defense against a stemâ€boring herbivore. New Phytologist, 2021, 232, 332-344.	3.5	23
363	An Ecologically Motivated Analysis of Plant-Herbivore Interactions in Native Tobacco. Plant Physiology, 2001, 127, 1449-1458.	2.3	23
364	Differences in Nicotine Metabolism of Two Nicotiana attenuata Herbivores Render Them Differentially Susceptible to a Common Native Predator. PLoS ONE, 2014, 9, e95982.	1.1	23
365	Use of silenced plants in allelopathy bioassays: a novel approach. Planta, 2009, 229, 569-575.	1.6	22
366	Variation in Antiherbivore Defense Responses in Synthetic <i>Nicotiana</i> Allopolyploids Correlates with Changes in Uniparental Patterns of Gene Expression Â. Plant Physiology, 2010, 153, 1907-1918.	2.3	22
367	Transformational tools for next-generation plant ecology: manipulation of gene expression for the functional analysis of genes. Plant Ecology and Diversity, 2012, 5, 485-490.	1.0	22
368	Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. Journal of Integrative Plant Biology, 2016, 58, 413-425.	4.1	22
369	Delayed Chemical Defense: Timely Expulsion of Herbivores Can Reduce Competition with Neighboring Plants. American Naturalist, 2019, 193, 125-139.	1.0	22
370	Argonaute4 Modulates Resistance to <i>Fusariumbrachygibbosum</i> Infection by Regulating Jasmonic Acid Signaling. Plant Physiology, 2020, 184, 1128-1152.	2.3	22
371	Silencing NaTPI Expression Increases Nectar Germin, Nectarins, and Hydrogen Peroxide Levels and Inhibits Nectar Removal from Plants in Nature. Plant Physiology, 2010, 152, 2232-2242.	2.3	21
372	New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. Plant Signaling and Behavior, 2010, 5, 287-289.	1.2	21
373	The multifaceted function of BAK1/SERK3. Plant Signaling and Behavior, 2011, 6, 1322-1324.	1.2	21
374	COI1-Regulated Hydroxylation of Jasmonoyl- <scp>l</scp> -isoleucine Impairs <i>Nicotiana attenuata</i> 's Resistance to the Generalist Herbivore <i>Spodoptera litura</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 2822-2831.	2.4	21
375	Circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature. Journal of Integrative Plant Biology, 2017, 59, 572-587.	4.1	21
376	Silencing an N-Acyltransferase-Like Involved in Lignin Biosynthesis in Nicotiana attenuata Dramatically Alters Herbivory-Induced Phenolamide Metabolism. PLoS ONE, 2013, 8, e62336.	1.1	21
377	Consistency of Nicotiana attenuata's Herbivore- and Jasmonate-Induced Transcriptional Responses in the Allotetraploid Species Nicotiana quadrivalvis and Nicotiana clevelandii. Plant Physiology, 2004, 135, 539-548.	2.3	20
378	The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses. BMC Plant Biology, 2010, 10, 171.	1.6	20

#	Article	IF	CITATIONS
379	Back to the past for pollination biology. Current Opinion in Plant Biology, 2011, 14, 429-434.	3.5	20
380	Flower movement balances pollinator needs and pollen protection. Ecology, 2019, 100, e02553.	1.5	20
381	For security and stability. Plant Signaling and Behavior, 2011, 6, 1479-1482.	1.2	19
382	The roots of <i>Salvia rhytidea:</i> a rich source of biologically active diterpenoids. Natural Product Research, 2017, 31, 477-481.	1.0	19
383	Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. ELife, 2018, 7, .	2.8	19
384	Training molecularly enabled field biologists to understand organism-level gene function. Molecules and Cells, 2008, 26, 1-4.	1.0	19
385	Microarrays in ecological research: a case study of a cDNA microarray for plant-herbivore interactions. BMC Ecology, 2004, 4, 13.	3.0	18
386	Interaction between herbivore defense and microbial signaling: bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology, 2010, 20, 149-154.	0.6	18
387	Jasmonic acid signalling mediates resistance of the wild tobacco <scp><i>N</i></scp> <i>icotiana attenuata</i> to its native <scp><i>F</i></scp> <i>usarium</i> , but not <scp><i>A</i></scp> <i>lternaria</i> , fungal pathogens. Plant, Cell and Environment, 2015, 38, 572-584.	2.8	18
388	Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biology, 2020, 18, e3000830.	2.6	18
389	Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in <i>Nicotiana attenuata</i> . Plant Cell, 2021, 33, 1748-1770.	3.1	18
390	Enhanced fluorescence imaging in chlorophyll-suppressed tobacco tissues using virus-induced gene silencing of the phytoene desaturase gene. BioTechniques, 2010, 48, 125-133.	0.8	17
391	Phaseoloidin, a Homogentisic Acid Glucoside from Nicotiana Attenuata Trichomes, Contributes to the Plant's Resistance against Lepidopteran Herbivores. Journal of Chemical Ecology, 2011, 37, 1091-1098.	0.9	17
392	Complex regulation of microRNAs in roots of competitively-grown isogenic Nicotiana attenuata plants with different capacities to interact with arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19, 937.	1.2	17
393	Floral Trait Variations Among Wild Tobacco Populations Influence the Foraging Behavior of Hawkmoth Pollinators. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	17
394	Squirting and refilling: Dynamics ofp-benzoquinone production in defensive glands ofDiploptera punctata. Journal of Chemical Ecology, 1990, 16, 2823-2834.	0.9	16
395	Fire, nitrogen, and defensive plasticity in Nicotiana attenuata. Oecologia, 1998, 115, 531-540.	0.9	16
396	A New Acyclic Diterpene Glycoside from Nicotiana attenuata with a Mild Deterrent Effect on Feeding Manduca sexta Larvae. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 1138-1142.	0.3	16

#	Article	IF	CITATIONS
397	Transduction of wound and herbivory signals in plastids. Communicative and Integrative Biology, 2010, 3, 313-317.	0.6	16
398	HSPRO Controls Early Nicotiana attenuata Seedling Growth during Interaction with the Fungus Piriformospora indica Â. Plant Physiology, 2012, 160, 929-943.	2.3	16
399	RNAi-mediated silencing of the HD-Zip gene HD20 in Nicotiana attenuata affects benzyl acetone emission from corollas via ABA levels and the expression of metabolic genes. BMC Plant Biology, 2012, 12, 60.	1.6	16
400	Silencing Brassinosteroid Receptor <i>BRI1</i> Impairs Herbivoryâ€elicited Accumulation of Jasmonic Acidâ€isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2013, 55, 514-526.	4.1	16
401	Ecological Observations of Native <i>Geocoris pallens</i> and <i>G. punctipes</i> Populations in the Great Basin Desert of Southwestern Utah. Psyche: Journal of Entomology, 2013, 2013, 1-11.	0.4	16
402	<i>NaMYB8</i> regulates distinct, optimally distributed herbivore defense traits. Journal of Integrative Plant Biology, 2017, 59, 844-850.	4.1	16
403	OPTIMAL DEFENSE THEORY PREDICTS THE ONTOGENY OF AN INDUCED NICOTINE DEFENSE. , 2000, 81, 1765.		16
404	Artificial diets 'capture' the dynamics of jasmonate-induced defenses in plants. Entomologia Experimentalis Et Applicata, 2001, 100, 127-130.	0.7	15
405	JAâ€lle signalling in <i>Solanum nigrum</i> is not required for defence responses in nature. Plant, Cell and Environment, 2011, 34, 2159-2171.	2.8	15
406	Determination of ¹⁵ N-Incorporation into Plant Proteins and their Absolute Quantitation: A New Tool to Study Nitrogen Flux Dynamics and Protein Pool Sizes Elicited by Plant–Herbivore Interactions. Journal of Proteome Research, 2012, 11, 4947-4960.	1.8	15
407	The Use of VIGS Technology to Study Plant–Herbivore Interactions. Methods in Molecular Biology, 2013, 975, 109-137.	0.4	15
408	Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. Plants, 2016, 5, 14.	1.6	15
409	The Clock Gene TOC1 in Shoots, Not Roots, Determines Fitness of <i>Nicotiana attenuata</i> under Drought. Plant Physiology, 2019, 181, 305-318.	2.3	15
410	Mate Selection in Self-Compatible Wild Tobacco Results from Coordinated Variation in Homologous Self-Incompatibility Genes. Current Biology, 2019, 29, 2020-2030.e5.	1.8	15
411	Light dominates the diurnal emissions of herbivore-induced volatiles in wild tobacco. BMC Plant Biology, 2021, 21, 401.	1.6	15
412	Isolation and characterization of the threonine deaminase promoter in Nicotiana attenuata. Plant Science, 2006, 171, 435-440.	1.7	14
413	Trichomes as dangerous lollipops: Do lizards also use caterpillar body and frass odor to optimize their foraging?. Plant Signaling and Behavior, 2011, 6, 1893-1896.	1.2	14
414	The <scp><i>N</i></scp> <i>icotiana attenuata</i> â€ <scp>GLA</scp> 1 lipase controls the accumulation of <scp><i>P</i></scp> <i>hytophthora parasitica</i> â€induced oxylipins and defensive secondary metabolites. Plant, Cell and Environment, 2014, 37, 1703-1715.	2.8	14

#	Article	IF	CITATIONS
415	<i>Trichobaris</i> weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance. Molecular Ecology, 2016, 25, 3509-3519.	2.0	14
416	Speciesâ€specific regulation of herbivoryâ€induced defoliation tolerance is associated with jasmonate inducibility. Ecology and Evolution, 2017, 7, 3703-3712.	0.8	14
417	Sex ratio of mirid populations shifts in response to hostplant coâ€infestation or altered cytokinin signaling. Journal of Integrative Plant Biology, 2017, 59, 44-59.	4.1	14
418	Evolution of a Novel and Adaptive Floral Scent in Wild Tobacco. Molecular Biology and Evolution, 2020, 37, 1090-1099.	3.5	14
419	Three MAPK Kinases, MEK1, SIPKK, and NPK2, are not Involved in Activation of SIPK after Wounding and Herbivore Feeding but Important for Accumulation of Trypsin Proteinase Inhibitors. Plant Molecular Biology Reporter, 2012, 30, 731-740.	1.0	13
420	Shifting <i>Nicotiana attenuata</i> 's diurnal rhythm does not alter its resistance to the specialist herbivore <i>Manduca sexta</i> . Journal of Integrative Plant Biology, 2016, 58, 656-668.	4.1	13
421	Cytotoxic diterpenoids from the roots of Salvia lachnocalyx. Revista Brasileira De Farmacognosia, 2017, 27, 475-479.	0.6	13
422	Cry1Ac production is costly for native plants attacked by non ry1Acâ€ŧargeted herbivores in the field. New Phytologist, 2018, 219, 714-727.	3.5	13
423	Evolution of Alternative Splicing in Eudicots. Frontiers in Plant Science, 2019, 10, 707.	1.7	13
424	Using natural variation to achieve a wholeâ€plant functional understanding of the responses mediated by jasmonate signaling. Plant Journal, 2019, 99, 414-425.	2.8	13
425	Tannins lost from sugar maple (Acer saccharum marsh) and yellow birch (Betula allegheniensis britt.) leaf litter. Soil Biology and Biochemistry, 1984, 16, 421-422.	4.2	12
426	Allometric Limits to the Induced Accumulation of Nicotine in Native Tobacco. Plant Species Biology, 1996, 11, 107-114.	0.6	12
427	Salicylic acid-dependent gene expression is activated by locomotion mucus of different molluscan herbivores. Communicative and Integrative Biology, 2014, 7, e28728.	0.6	12
428	Rootâ€expressed phytochromes <scp>B</scp> 1 and <scp>B</scp> 2, but not <scp>P</scp> hy <scp>A</scp> and <scp>C</scp> ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588.	2.8	12
429	Primary function for a chemical defense? Nicotine does not protect Datura stramonium L from UV damage. Oecologia, 1994, 97, 243-247.	0.9	11
430	Allelic differences of clustered terpene synthases contribute to correlated intraspecific variation of floral and herbivoryâ€induced volatiles in a wild tobacco. New Phytologist, 2020, 228, 1083-1096.	3.5	11
431	Ethylene is a local modulator of jasmonateâ€dependent phenolamide accumulation during <i>Manduca sexta</i> herbivory in <scp><i>Nicotiana attenuata</i></scp> . Plant, Cell and Environment, 2021, 44, 964-981.	2.8	11
432	Finally, Proof of Weapons of Mass Destruction. Science Signaling, 2003, 2003, pe42-pe42.	1.6	10

#	Article	IF	CITATIONS
433	Grasshopper oral secretions increase salicylic acid and abscic acid levels in wounded leaves of <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2011, 6, 1256-1258.	1.2	10
434	Label-free nanoUPLC-MSE based quantification of antimicrobial peptides from the leaf apoplast of Nicotiana attenuata. BMC Plant Biology, 2015, 15, 18.	1.6	10
435	Functional specialization of <i>Nicotiana attenuata</i> phytochromes in leaf development and flowering time. Journal of Integrative Plant Biology, 2017, 59, 205-224.	4.1	10
436	Fitness consequences of a clock pollinator filter in <i>Nicotiana attenuata</i> flowers in nature. Journal of Integrative Plant Biology, 2017, 59, 805-809.	4.1	10
437	Jasmonate signaling makes flowers attractive to pollinators and repellant to florivores in nature. Journal of Integrative Plant Biology, 2018, 60, 190-194.	4.1	10
438	The circadian clock contributes to diurnal patterns of plant indirect defense in nature. Journal of Integrative Plant Biology, 2019, 61, 924-928.	4.1	10
439	The hydroxyproline-rich glycopeptide systemin precursor NapreproHypSys does not play a central role in Nicotiana attenuata's anti-herbivore defense responses. Plant, Cell and Environment, 2007, 30, 1450-1464.	2.8	9
440	Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC Plant Biology, 2008, 8, 109.	1.6	9
441	<i>TOC1</i> in <i>Nicotiana attenuata</i> regulates efficient allocation of nitrogen to defense metabolites under herbivory stress. New Phytologist, 2020, 228, 1227-1242.	3.5	9
442	Heritability of a Quantitative and Qualitative Protease Inhibitor Polymorphism in Nicotiana attenuata. Plant Biology, 2003, 5, 179-185.	1.8	8
443	SOIL DEGRADATION SLOWS GROWTH AND INHIBITS JASMONATEâ€INDUCED RESISTANCE IN ARTEMISIA VULGARIS. , 2005, 15, 1689-1700.		8
444	A dual fluorescent/MALDI chip platform for analyzing enzymatic activity and for protein profiling. Proteomics, 2009, 9, 171-181.	1.3	8
445	HSPRO acts via SnRK1-mediated signaling in the regulation of <i>Nicotiana attenuata</i> seedling growth promoted by <i>Piriformospora indica</i> . Plant Signaling and Behavior, 2013, 8, e23537.	1.2	8
446	Silencing ribulose-1,5-bisphosphate carboxylase/oxygenase expression does not disrupt nitrogen allocation to defense after simulated herbivory in <i>Nicotiana attenuata</i> . Plant Signaling and Behavior, 2013, 8, e27570.	1.2	8
447	In wild tobacco, <i>Nicotiana attenuata</i> , variation among bacterial communities of isogenic plants is mainly shaped by the local soil microbiota independently of the plants' capacity to produce jasmonic acid. Communicative and Integrative Biology, 2015, 8, e1017160.	0.6	8
448	Plantâ€mediated pheromone emission by a hemipteran seed feeder increases the apparency of an unreliable but rewarding host. New Phytologist, 2016, 211, 113-125.	3.5	8
449	Localized micronutrient patches induce lateral root foraging and chemotropism in <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2017, 59, 759-771.	4.1	8
450	A robust genome-editing method for wild plant species Nicotiana attenuata. Plant Biotechnology Reports, 2020, 14, 585-598.	0.9	8

#	Article	IF	CITATIONS
451	Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. , 1996, , 213-220.		8
452	Cytokinin Analysis: Sample Preparation and Quantification. Bio-protocol, 2014, 4, .	0.2	8
453	Foliar and floral pyrethrins ofChrysanthemum cinerariaefolium are not induced by leaf damage. Journal of Chemical Ecology, 1993, 19, 2081-2087.	0.9	7
454	Inducible defenses and population biology. Trends in Ecology and Evolution, 1996, 11, 104-105.	4.2	7
455	Evolution: The Ecological Reverberations of Toxic Trace Elements. Current Biology, 2006, 16, R958-R960.	1.8	7
456	Silencing the Hydroxyproline-Rich Glycopeptide Systemin Precursor in Two Accessions of Nicotiana attenuata Alters Flower Morphology and Rates of Self-Pollination Â. Plant Physiology, 2009, 149, 1690-1700.	2.3	7
457	Lipoxygenase-mediated modification of insect elicitors. Plant Signaling and Behavior, 2010, 5, 1674-1676.	1.2	7
458	Jasmonate Signaling in the Field, Part II: Insect-Guided Characterization of Genetic Variations in Jasmonate-Dependent Defenses of Transgenic and Natural Nicotiana attenuata Populations. Methods in Molecular Biology, 2013, 1011, 97-109.	0.4	7
459	The rapidly evolving associations among herbivore associated elicitor-induced phytohormones in Nicotiana. Plant Signaling and Behavior, 2015, 10, e1035850.	1.2	7
460	Cytotoxic Activities of Different Iranian Solanaceae and Lamiaceae Plants and Bioassay-Guided Study of an Active Extract from <i>Salvia lachnocalyx</i> . Natural Product Communications, 2017, 12, 1934578X1701201.	0.2	7
461	ZEITLUPE is required for shade avoidance in the wild tobacco <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2020, 62, 1341-1351.	4.1	7
462	Functional Interactions in the Use of Direct and Indirect Defences in Native <i>Nicotiana</i> Plants. Novartis Foundation Symposium, 1999, 223, 74-94.	1.2	7
463	Phytochemical Investigation on Euphorbia macrostegia (Persian wood spurge). Iranian Journal of Pharmaceutical Research, 2015, 14, 243-9.	0.3	7
464	Comparative hydrodistillation and headspace SPME-GC-MS analysis of volatile constituents of roots and shoots of Artemisia annua and Artemisia sieberi. Chemistry of Natural Compounds, 2014, 49, 1148-1153.	0.2	6
465	Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis. PLoS ONE, 2015, 10, e0136234.	1.1	6
466	Evidence of an evolutionary hourglass pattern in herbivoryâ€induced transcriptomic responses. New Phytologist, 2017, 215, 1264-1273.	3.5	6
467	microRNA390 modulates <scp><i>Nicotiana attenuata</i></scp> 's tolerance response to <scp><i>Manduca sexta</i></scp> herbivory. Plant Direct, 2021, 5, e350.	0.8	6
468	Determining the scale at which variation in a single gene changes population yields. ELife, 2020, 9, .	2.8	6

#	Article	IF	CITATIONS
469	Syringaldehyde is a novel smoke-derived germination cue for the native fire-chasing tobacco, <i>Nicotiana attenuata</i> . Seed Science Research, 2021, 31, 292-299.	0.8	6
470	The downside of metabolic diversity: Postingestive rearrangements by specialized insects. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
471	Smoke and mirrors: reply to Fotheringham and Keeley. Seed Science Research, 2005, 15, 373-375.	0.8	5
472	Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions. , 2012, , 287-307.		5
473	Honing in on phenotypes: comprehensive two-dimensional gas chromatography of herbivory-induced volatile emissions and novel opportunities for system-level analyses. AoB PLANTS, 2013, 5, plt002.	1.2	5
474	Nicotiana attenuata Genome Reveals Genes in the Molecular Machinery Behind Remarkable Adaptive Phenotypic Plasticity. Compendium of Plant Genomes, 2020, , 211-229.	0.3	5
475	Cytotoxic Activity of Two Cembranoid Diterpenes from Nicotiana Sylvestris Against Three Human Cancer Cell Lines. The Open Bioactive Compounds Journal, 2017, 5, 1-8.	0.8	5
476	Improving the accuracy of expression data analysis in time course experiments using resampling. BMC Bioinformatics, 2014, 15, 352.	1.2	4
477	Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS ONE, 2018, 13, e0197221.	1.1	4
478	Cytotoxic furanosesquiterpenoids and steroids from <i>Ircinia mutans</i> sponges. Pharmaceutical Biology, 2021, 59, 573-581.	1.3	4
479	Quantification of Blumenol Derivatives as Leaf Biomarkers for Plant-AMF Association. Bio-protocol, 2019, 9, e3301.	0.2	4
480		3.0	3
481	Jasmonoyl- <scp>l</scp> -isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in <i>N. attenuata</i> . Plant Signaling and Behavior, 2014, 9, e28973.	1.2	3
482	Natural variation in linalool metabolites: One genetic locus, many functions?. Journal of Integrative Plant Biology, 2021, 63, 1416-1421.	4.1	3
483	A Mixed Bag: The Plant Growth-Promoting Sebacina vermifera Impairs Defense Mechanisms Against Herbivores. Soil Biology, 2013, , 251-261.	0.6	3
484	California TRV-based VIGS vectors mediate gene silencing at elevated temperatures but with greater growth stunting. BMC Plant Biology, 2021, 21, 553.	1.6	3
485	Transformation of Lapachol to a Novel Naphthoquinone and Related Compounds. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 73-77.	0.3	2
486	An integrative statistical method to explore herbivory-specific responses in plants. Plant Signaling and Behavior, 2013, 8, e25638.	1.2	2

#	Article	IF	CITATIONS
487	ZEITLUPE facilitates the rhythmic movements of <i>Nicotiana attenuata</i> flowers. Plant Journal, 2020, 103, 308-322.	2.8	2
488	Ecology in the genomics era of a degraded planet. ELife, 2014, 3, e02394.	2.8	2
489	Harmonizing biosynthesis with post-ingestive modifications to understand the ecological functions of plant natural products. Natural Product Reports, 2022, , .	5.2	2
490	Using Biotechnology to Understand Herbivore Resistance in Native Plants. Nature Biotechnology, 1999, 17, 20-20.	9.4	1
491	Jasmonate Signaling in the Field, Part I: Elicited Changes in Jasmonate Pools of Transgenic Nicotiana attenuata Populations. Methods in Molecular Biology, 2013, 1011, 83-95.	0.4	1
492	Multiple interactions of NaHER1 protein with abscisic acid signaling inNicotiana attenuataplants. Plant Signaling and Behavior, 2013, 8, e26365.	1.2	1
493	Variation in Manduca sexta Pollination-Related Floral Traits and Reproduction in a Wild Tobacco Plant. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
494	Tissue-specific systemic responses of the wild tobacco Nicotiana attenuata against stem-boring herbivore attack. Journal of Ecology and Environment, 2021, 45, .	1.6	1
495	Virus-Induced Gene Silencing in Plant MAPK Research. Methods in Molecular Biology, 2014, 1171, 79-89.	0.4	1
496	Determination of Nectar Nicotine Concentration in N. attenuata. Bio-protocol, 2013, 3, .	0.2	1
497	Low-level cadmium exposure influences rice resistance to herbivores by priming jasmonate signaling. Environmental and Experimental Botany, 2022, 194, 104741.	2.0	1
498	New insights into mechanisms regulating differential accumulation of phenylpropanoid-polyamine conjugates (PPCs) in herbivore-attackedNicotiana attenuataplants. Plant Signaling and Behavior, 2010, 5, 610-613.	1.2	0
499	Discovery of Electricity and the Electromagnetic Force: Its Importance for Environmentalists, Educators, Physicians, Politicians, and Citizens. Advances in Social Sciences Research Journal, 2020, 7, 362-383.	0.1	0

500 Molecular Ecology of Plant Competition. , 0, , 197-220.

0