Nikunjkumar R Visaveliya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774943/publications.pdf

Version: 2024-02-01

623699 677123 33 527 14 22 g-index citations h-index papers 36 36 36 548 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stationary, Continuous, and Sequential Surfaceâ€Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymerâ€Metal Composite Sensor Particles through Microfluidics: A Review. Advanced Optical Materials, 2022, 10, .	7.3	11
2	General Background of SERS Sensing and Perspectives on Polymerâ€Supported Plasmonâ€Active Multiscale and Hierarchical Sensor Particles. Advanced Optical Materials, 2022, 10, 2102001.	7.3	5
3	Hierarchical Assemblies of Polymer Particles through Tailored Interfaces and Controllable Interfacial Interactions. Advanced Functional Materials, 2021, 31, 2007407.	14.9	15
4	Softness Meets with Brightness: Dyeâ€Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling. Advanced Optical Materials, 2021, 9, 2002219.	7.3	14
5	Softness Meets with Brightness: Dyeâ€Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling (Advanced Optical Materials 13/2021). Advanced Optical Materials, 2021, 9, 2170050.	7.3	O
6	Soft matter: Shape control at the nanoscale despite amorphousness. Matter, 2021, 4, 3369-3371.	10.0	0
7	Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding. Nature Chemistry, 2020, 12, 1157-1164.	13.6	17
8	Emerging Structural and Interfacial Features of Particulate Polymers at the Nanoscale. Langmuir, 2020, 36, 13125-13143.	3. 5	2
9	Preparation and Deep Characterization of Composite/Hybrid Multi-Scale and Multi-Domain Polymeric Microparticles. Materials, 2019, 12, 3921.	2.9	10
10	Single-Step In Situ Assembling Routes for the Shape Control of Polymer Nanoparticles. Biomacromolecules, 2018, 19, 1047-1064.	5.4	10
11	Microfluidically Assisted Construction of Hierarchical Multicomponent Microparticles for Short Intermediate Diffusion Paths in Heterogeneous Catalysis. ACS Applied Nano Materials, 2018, 1, 6398-6406.	5.0	6
12	Application of Polyionic Macromolecules in Micro Flow Syntheses of Nanoparticles. Macromolecular Chemistry and Physics, 2017, 218, 1600371.	2.2	10
13	Hierarchically structured particles for micro flow catalysis. Chemical Engineering Journal, 2017, 326, 1058-1065.	12.7	21
14	Interfacialâ€Active Polymer Nanoparticles, Their Assemblies, and SERS Application. Macromolecular Chemistry and Physics, 2017, 218, 1700261.	2.2	9
15	Surface Wrinkling and Porosity of Polymer Particles toward Biological and Biomedical Applications. Advanced Materials Interfaces, 2017, 4, 1700929.	3.7	20
16	Micro-flow assisted synthesis of fluorescent polymer nanoparticles with tuned size and surface properties. Nanotechnology Reviews, 2016, 5, .	5.8	16
17	Microflow-assisted assembling of multi-scale polymer particles by controlling surface properties and interactions. European Polymer Journal, 2016, 80, 256-267.	5.4	14
18	Microfluidics: Microfluidic Assisted Synthesis of Multipurpose Polymer Nanoassembly Particles for Fluorescence, LSPR, and SERS Activities (Small 48/2015). Small, 2015, 11, 6370-6370.	10.0	0

#	Article	IF	CITATIONS
19	Role of Self-Polarization in a Single-Step Controlled Synthesis of Linear and Branched Polymer Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 1212-1219.	2.2	19
20	Microfluidic Assisted Synthesis of Multipurpose Polymer Nanoassembly Particles for Fluorescence, LSPR, and SERS Activities. Small, 2015, 11, 6435-6443.	10.0	35
21	Microflow SERS Measurements Using Sensing Particles of Polyacrylamide/Silver Composite Materials. Chemical Engineering and Technology, 2015, 38, 1144-1149.	1.5	14
22	Identification of response classes from heavy metalâ€tolerant soil microbial communities by highly resolved concentrationâ€dependent screenings in a microfluidic system. Methods in Ecology and Evolution, 2015, 6, 600-609.	5.2	10
23	Composite Sensor Particles for Tuned SERS Sensing: Microfluidic Synthesis, Properties and Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10742-10754.	8.0	34
24	Simultaneous size and color tuning of polymer microparticles in a single-step microfluidic synthesis: particles for fluorescence labeling. Journal of Materials Chemistry C, 2015, 3, 844-853.	5.5	30
25	Controlling formation and assembling of nanoparticles by control of electrical charging, polarization, and electrochemical potential. Nanotechnology Reviews, 2014, 3, .	5 . 8	14
26	Control of Shape and Size of Polymer Nanoparticles Aggregates in a Single-Step Microcontinuous Flow Process: A Case of Flower and Spherical Shapes. Langmuir, 2014, 30, 12180-12189.	3.5	34
27	Vesicle Structures from Bolaamphiphilic Biosurfactants: Experimental and Molecular Dynamics Simulation Studies on the Effect of Unsaturation on Sophorolipid Self-Assemblies. Chemistry - A European Journal, 2014, 20, 6246-6250.	3.3	31
28	Single-Step Microfluidic Synthesis of Various Nonspherical Polymer Nanoparticles via in Situ Assembling: Dominating Role of Polyelectrolytes Molecules. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11254-11264.	8.0	45
29	Heterogeneous Nanoassembling: Microfluidically Prepared Poly(methyl methacrylate) Nanoparticles on Ag Microrods and ZnO Microflowers. Particle and Particle Systems Characterization, 2013, 30, 614-623.	2.3	18
30	Spontaneous transformation of polyelectrolyte-stabilized silver nanoprisms by interaction with thiocyanate. Journal of Colloid and Interface Science, 2013, 394, 78-84.	9.4	12
31	A self-seeding synthesis of Ag microrods of tuned aspect ratio: ascorbic acid plays a key role. Nanotechnology, 2013, 24, 345604.	2.6	17
32	Influence of the Sophorolipid Molecular Geometry on their Selfâ€Assembled Structures. Chemistry - an Asian Journal, 2013, 8, 369-372.	3.3	32
33	Microfluidic-Supported Synthesis of Anisotropic Polyvinyl Methacrylate Nanoparticles via Interfacial Agents Polymer Chemistry, 0, , .	3.9	O