Thorsten E Boroviak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774782/publications.pdf

Version: 2024-02-01

22 papers 1,844 citations

623188 14 h-index 752256 20 g-index

27 all docs

27 docs citations

times ranked

27

2667 citing authors

#	Article	IF	CITATIONS
1	The ability of inner-cell-mass cells to self-renew asÂembryonic stem cells is acquired following epiblastÂspecification. Nature Cell Biology, 2014, 16, 513-525.	4.6	386
2	Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Developmental Cell, 2015, 35, 366-382.	3.1	383
3	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	13.5	209
4	Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development (Cambridge), 2018, 145, .	1.2	167
5	Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human preimplantation epiblast. Development (Cambridge), 2018, 145, .	1.2	155
6	Primate embryogenesis predicts the hallmarks of human na \tilde{A} -ve pluripotency. Development (Cambridge), 2017, 144, 175-186.	1.2	106
7	Origin and function of the yolk sac in primate embryogenesis. Nature Communications, 2020, 11, 3760.	5.8	99
8	Spatial profiling of early primate gastrulation in utero. Nature, 2022, 609, 136-143.	13.7	56
9	The birth of embryonic pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130541.	1.8	48
10	Metabolic control of DNA methylation in naive pluripotent cells. Nature Genetics, 2021, 53, 215-229.	9.4	35
11	OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
12	The Apical Polarity Determinant Crumbs 2 Is a Novel Regulator of ESC-Derived Neural Progenitors. Stem Cells, 2011, 29, 193-205.	1.4	29
13	High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris. Protein Expression and Purification, 2008, 57, 226-233.	0.6	20
14	Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Reports, 2021, 16, 1347-1362.	2.3	16
15	A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nature Communications, 2022, 13, .	5.8	14
16	An integrated atlas of human placental development delineates essential regulators of trophoblast stem cells. Development (Cambridge), 2022, 149, .	1.2	14
17	Development and Characterization of cDNA Resources for the Common Marmoset: One of the Experimental Primate Models. DNA Research, 2013, 20, 255-262.	1.5	12
18	Building a stem cell-based primate uterus. Communications Biology, 2021, 4, 749.	2.0	12

#	Article	IF	CITATIONS
19	Maximizing Clonal Embryonic Stem Cell Derivation by ERK Pathway Inhibition. Methods in Molecular Biology, 2015, 1341, 1-13.	0.4	1
20	08-P012 Cellular polarity in mouse embryonic stem cells during neural differentiation. Mechanisms of Development, 2009, 126, S147.	1.7	0
21	The blueprint of primate preimplantation development. Mechanisms of Development, 2017, 145, S55.	1.7	0
22	A human embryo model cracks symmetry breaking. Cell Stem Cell, 2022, 29, 869-870.	5.2	0