Sebastien Cahen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774738/publications.pdf Version: 2024-02-01

SEBASTIEN CAHEN

#	Article	IF	CITATIONS
1	Simple production of high-quality graphene foams by pyrolysis of sodium ethoxide. Materials Chemistry and Physics, 2018, 219, 57-66.	2.0	17
2	Multi-scale characterization of graphenic materials synthesized by a solvothermal-based process: Influence of the thermal treatment. Solid State Sciences, 2015, 50, 42-51.	1.5	14
3	Quantitative investigation of mineral impurities of HiPco SWCNT samples: Chemical mechanisms for purification and annealing treatments. Carbon, 2015, 93, 933-944.	5.4	13
4	An efficient medium to intercalate metals into graphite: LiCl-KCl molten salts. Carbon, 2019, 144, 171-176.	5.4	12
5	Analogies and differences between calcium-based and europium-based graphite intercalation compounds. Comptes Rendus Chimie, 2013, 16, 385-390.	0.2	11
6	Structural and magnetic properties of a stage-2 HoCl3-graphite intercalation compound. Carbon, 2006, 44, 259-266.	5.4	10
7	Bulk synthesis and crystal structure of the first stage europium–graphite intercalation compound. Carbon, 2010, 48, 3190-3195.	5.4	10
8	LiCl-KCl eutectic molten salt as an original and efficient medium to intercalate metals into graphite: Case of europium. Carbon, 2018, 133, 379-383.	5.4	10
9	Crystal structure of first stage strontium-graphite intercalation compound. Carbon, 2020, 168, 732-736.	5.4	9
10	Synthesis, structure and magnetic properties of lanthanide trichloridesâ€GIC: Stage-2 DyCl3–GIC. Journal of Physics and Chemistry of Solids, 2006, 67, 1223-1227.	1.9	8
11	The zero-field magnetic ground state of EuC6 investigated by muon spectroscopy. Carbon, 2012, 50, 3995-4001.	5.4	8
12	Topotactic Mechanisms Related to the Graphene Planes: Chemical Intercalation of Electron Donors into Graphite. European Journal of Inorganic Chemistry, 2019, 2019, 4798-4806.	1.0	8
13	Gold nano-sheets intercalated between graphene planes. Carbon, 2013, 65, 236-242.	5.4	7
14	Intercalation of barium into graphite by molten salts method: Synthesis of massive samples for crystal structure determination of BaC6. Carbon, 2022, 186, 431-436.	5.4	7
15	Exhaustive inventory of 2D unit cells commensurate with honeycomb graphene structure. Carbon, 2015, 94, 919-927.	5.4	6
16	Original synthesis route of bulk binary superconducting graphite intercalation compounds with strontium, barium and ytterbium. New Journal of Chemistry, 2020, 44, 10050-10055.	1.4	6
17	Competing magnetic interactions in the graphite-intercalation compound Li0.25Eu1.95C6. Carbon, 2013, 63, 294-302.	5.4	5
18	Versatile behavior upon intercalation by chemical vapor transport of lanthanide trichlorides into graphite. Carbon, 2011, 49, 1834-1841.	5.4	4

SEBASTIEN CAHEN

#	Article	IF	CITATIONS
19	Overview on the intercalation of gold into graphite. Carbon, 2019, 145, 501-506.	5.4	4
20	Graphite–lithium–europium system: Modulation of the structural and physical properties of the lamellar phases as a consequence of their chemical composition. Carbon, 2014, 77, 803-813.	5.4	3
21	Toward the control of graphenic foams. Pure and Applied Chemistry, 2017, 89, 565-577.	0.9	3
22	Gold-potassium sheets intercalated into graphite: Chemistry and structure of a first stage ternary compound. Carbon, 2018, 140, 182-188.	5.4	3
23	Intercalation of sodium and heavy alkali metals into graphenic foams. Microporous and Mesoporous Materials, 2020, 306, 110344.	2.2	3
24	Comparative study of ternary graphite-potassium-metal (M=Tl, Hg, Au) intercalation compounds. Tanso, 2015, 2015, 145-153.	0.1	2
25	Chemical vapor transport for intercalation reactions: Synthesis of a 1st stage DyCl3 graphite intercalation compound. Journal of Solid State Chemistry, 2021, 299, 122185.	1.4	1
26	Co-intercalation into graphite of lithium, potassium and barium usingÂLiCl–KClÂmolten salt. Carbon Letters, 2023, 33, 1303-1309.	3.3	1