Raquel E Galian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774566/publications.pdf Version: 2024-02-01

PAQUEL E CALIAN

#	Article	IF	CITATIONS
1	Nontemplate Synthesis of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles. Journal of the American Chemical Society, 2014, 136, 850-853.	13.7	1,128
2	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
3	Maximizing the emissive properties of CH ₃ NH ₃ PbBr ₃ perovskite nanoparticles. Journal of Materials Chemistry A, 2015, 3, 9187-9193.	10.3	310
4	Delayed Luminescence in Lead Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 13381-13390.	3.1	148
5	Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. Particle and Particle Systems Characterization, 2015, 32, 709-720.	2.3	144
6	The Luminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small, 2016, 12, 5245-5250.	10.0	116
7	Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals. Chemical Communications, 2006, , 257-259.	4.1	84
8	The use of quantum dots in organic chemistry. TrAC - Trends in Analytical Chemistry, 2009, 28, 279-291.	11.4	82
9	Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials. Journal of Materials Chemistry A, 2015, 3, 14039-14045.	10.3	74
10	Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. Optics Express, 2016, 24, A285.	3.4	69
11	Photoluminescence Enhancement of CdSe Quantum Dots: A Case of Organogel–Nanoparticle Symbiosis. Journal of the American Chemical Society, 2012, 134, 20554-20563.	13.7	65
12	Catalytic processes activated by light. Energy and Environmental Science, 2010, 3, 1488.	30.8	52
13	Non-linear effects in the quenching of fluorescent semiconductor nanoparticles by paramagnetic species. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1337-1343.	1.8	50
14	Sensing Chiral Drugs by Using CdSe/ZnS Nanoparticles Capped with <i>N</i> â€Acetylâ€< scp>Lâ€Cysteine Methyl Ester. Chemistry - A European Journal, 2013, 19, 11068-110)76 ^{3.3}	49
15	Photoreaction between 2-Benzoylthiophene and Phenol or Indole. Journal of Organic Chemistry, 2003, 68, 5104-5113.	3.2	46
16	Cyclodextrin enhanced fluorimetric method for the determination of tryptamine. Analyst, The, 1998, 123, 1587-1591.	3.5	39
17	Highly fluorescent and photostable organic- and water-soluble CdSe/ZnS core-shell quantum dots capped with thiols. RSC Advances, 2012, 2, 1632-1638.	3.6	38
18	Efficient Cementing of CH ₃ NH ₃ PbBr ₃ Nanoparticles to Upconversion Nanoparticles Visualized by Confocal Microscopy. Advanced Functional Materials, 2016, 26, 5131-5138.	14.9	36

RAQUEL E GALIAN

#	Article	IF	CITATIONS
19	Kinetic Solvent Effects on the Reaction of an Aromatic Ketone π,π* Triplet with Phenol. Rate-Retarding and Rate-Accelerating Effects of Hydrogen-Bond Acceptor Solvents. Journal of the American Chemical Society, 2007, 129, 9280-9281.	13.7	33
20	Pyrene-Functionalized Nanoparticles: Two Independent Sensors, the Excimer and the Monomer. Analytical Chemistry, 2012, 84, 8083-8087.	6.5	32
21	Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. Chemical Communications, 2012, 48, 2573-2575.	4.1	32
22	Photochemical Size Reduction of CdSe and CdSe/ZnS Semiconductor Nanoparticles Assisted by nï€* Aromatic Ketones. Journal of the American Chemical Society, 2009, 131, 892-893.	13.7	30
23	Fe ₃ O ₄ @Au@mSiO ₂ as an enhancing nanoplatform for Rose Bengal photodynamic activity. Nanoscale, 2017, 9, 10388-10396.	5.6	30
24	Research Frontiers in Energyâ€Related Materials and Applications for 2020–2030. Advanced Sustainable Systems, 2020, 4, 1900145.	5.3	30
25	Hydroxypropyl-Î ² -cyclodextrin enhanced fluorimetric method for the determination of melatonin and 5-methoxytryptamine. Analyst, The, 2000, 125, 1465-1470.	3.5	29
26	Fluorescence quenching of CdSequantum dots by tertiary amines and their surface binding effect. Photochemical and Photobiological Sciences, 2009, 8, 70-74.	2.9	29
27	The synergy between the CsPbBr ₃ nanoparticle surface and the organic ligand becomes manifest in a demanding carbon–carbon coupling reaction. Chemical Communications, 2020, 56, 5026-5029.	4.1	28
28	Diaryl Ketones as Photoactivators. Mini-Reviews in Organic Chemistry, 2006, 3, 117-135.	1.3	25
29	Nitroanilines as Quenchers of Pyrene Fluorescence. ChemPhysChem, 2012, 13, 4195-4201.	2.1	23
30	Size Reduction of CdSe/ZnS Coreâ^'Shell Quantum Dots Photosensitized by Benzophenone: Where Does the Cd(0) Go?. Langmuir, 2011, 27, 1942-1945.	3.5	21
31	Doping of photonic crystal fibers with fluorescent probes: possible functional materials for optrode sensors. Journal of Materials Chemistry, 2006, 16, 1697-1701.	6.7	20
32	Highly photoluminescent, dense solid films from organic-capped CH ₃ NH ₃ PbBr ₃ perovskite colloids. Journal of Materials Chemistry C, 2018, 6, 6771-6777.	5.5	20
33	Colloids of Naked CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles: Synthesis, Stability, and Thin Solid Film Deposition. ACS Omega, 2018, 3, 1298-1303.	3.5	19
34	Linear Coassembly of Upconversion and Perovskite Nanoparticles: Sensitized Upconversion Emission of Perovskites by Lanthanideâ€Doped Nanoparticles. Advanced Functional Materials, 2020, 30, 2003766.	14.9	19
35	Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces. Advanced Optical Materials, 2018, 6, 1701203.	7.3	18
36	Intramolecular Electron Transfer between Tyrosine and Tryptophan Photosensitized by a Chiral π,π* Aromatic Ketone. Chemistry - A European Journal, 2005, 11, 3443-3448.	3.3	17

RAQUEL E GALIAN

#	Article	IF	CITATIONS
37	Hydroxypropyl-β-cyclodextrin effect on the fluorescence of auxin and skatole and on the simultaneous determination of binary mixtures of indole compounds in urine by first derivative spectrofluorimetry. Analytica Chimica Acta, 2005, 540, 393-401.	5.4	16
38	Benzo[d]-1,2-oxaphospholes as Precursors of Stabilized C-Centered Radicals. Organic Letters, 2004, 6, 561-564.	4.6	15
39	Unconventional Fluorescence Quenching in Naphthalimide-Capped CdSe/ZnS Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 7365-7375.	3.1	15
40	Pyrene apped CdSe@ZnS Nanoparticles as Sensitive Flexible Oxygen Sensors in Nonâ€Aqueous Media. ChemistryOpen, 2014, 3, 199-205.	1.9	15
41	Light-responsive hybrid material based on luminescent core–shell quantum dots and steroidal organogel. Journal of Materials Chemistry C, 2016, 4, 7035-7042.	5.5	15
42	Alkoxy-styryl DCDHF fluorophores. Physical Chemistry Chemical Physics, 2010, 12, 7768.	2.8	14
43	Influence of Substitution at the Benzylic Position on the Behavior of Stereoisomeric Phosphorus Compounds as Precursors of Stabilized Carbon-Centered Radicals. Organic Letters, 2005, 7, 3869-3872.	4.6	13
44	Further Insight into the Photostability of the Pyrene Fluorophore in Halogenated Solvents. ChemPhysChem, 2012, 13, 835-844.	2.1	13
45	Fluorescence enhancement of amine-capped CdSe/ZnS quantum dots by thiol addition. Canadian Journal of Chemistry, 2011, 89, 359-363.	1.1	12
46	Stereodifferentiation in the formation and decay of the encounter complex in bimolecular electron transfer with photoactivated acceptors. Chemical Communications, 2005, , 3180.	4.1	11
47	Controlled building of CdSe@ZnS/Au and CdSe@ZnS/Au2S/Au nanohybrids. Nano Research, 2015, 8, 2271-2287.	10.4	11
48	Ruddlesden–Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure <i>n</i> =2: Stabilized Colloids Stored in the Solid State. Angewandte Chemie - International Edition, 2021, 60, 27312-27317.	13.8	8
49	Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging. Nanomaterials, 2022, 12, 2130.	4.1	8
50	Simultaneous Fluorimetric Determination of Pteridin Derivatives: Comparison between Synchronous, Partial Least-Squares, and Hybrid Linear Analysis Methods. Applied Spectroscopy, 2001, 55, 701-707.	2.2	7
51	Photoreaction Between Benzoylthiophenes and N-BOC-Tryptophan Methyl Ester‡. Photochemistry and Photobiology, 2006, 82, 231.	2.5	7
52	Fluorescence quenching inhibition of substituted indoles by neutral and ionized cyclodextrins nanocavities. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 356-362.	3.9	7
53	Ultrathin lead bromide perovskite platelets spotted with europium(<scp>ii</scp>) bromide dots. Nanoscale, 2019, 11, 18065-18070.	5.6	7
54	Triplet exciplexes as energy transfer photosensitisers. Chemical Communications, 2006, , 1021.	4.1	6

RAQUEL E GALIAN

#	Article	IF	CITATIONS
55	Linear assembly of lead bromide-based nanoparticles inside lead(<scp>ii</scp>) polymers prepared by mixing the precursors of both the nanoparticle and the polymer. Chemical Communications, 2019, 55, 2968-2971.	4.1	6
56	Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks. Molecules, 2021, 26, 5620.	3.8	6
57	Laser Ablation of Hybrid Perovskite Bulks into Nanoparticles: Adamantylammonium Halides as Ligands and Halide Sources. ChemNanoMat, 2019, 5, 328-333.	2.8	5
58	Steady-state and time-resolved studies on the formation of skatolyl radicals photosensitized by 2-benzoylthiophene. Photochemical and Photobiological Sciences, 2003, 2, 1200-1204.	2.9	4
59	Aromatic Ketones as Photocatalysts: Combined Action as Triplet Photosensitiser and Ground State Electron Acceptor. ChemPhysChem, 2006, 7, 2077-2080.	2.1	4
60	Synergism at the Nanoscale. Advances in Chemical and Materials Engineering Book Series, 2016, , 42-77.	0.3	3
61	Revisiting the nontemplate approach for the synthesis of highly green emissive hybrid perovskite nanocrystals: platelets or spheres?. Nanoscale, 2022, 14, 1160-1164.	5.6	2
62	Three independent channel nanohybrids as fluorescent probes. RSC Advances, 2015, 5, 90065-90070.	3.6	1
63	Ruddlesdenâ€Popper hybrid lead bromide perovskite nanosheets of phase pure n = 2: stabilized colloids stored in the solid state. Angewandte Chemie, 2021, 133, 27518.	2.0	1
64	Electrochemistry of Metal Nanoparticles and Quantum Dots. , 2016, , 715-743.		1
65	Benzo[d]-1,2-oxaphospholes as Precursors of Stabilized C-Centered Radicals. Organic Letters, 2004, 6, 2639-2639.	4.6	0
66	Electrochemistry of Metal Nanoparticles and Quantum Dots. , 2014, , 1-25.		0
67	Electrochemistry of Metal Nanoparticles and Quantum Dots. , 2015, , 1-25.		0