Jan Zatloukal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1774116/publications.pdf

Version: 2024-02-01

1684188 1058476 27 305 5 14 citations g-index h-index papers 27 27 27 273 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cratering damage of high-performance cementitious composites and conventional normal strength concrete caused by in-service projectile impact. Materials Today: Proceedings, 2022, , .	1.8	O
2	Volume changes of cement composites for evaporator concentrates immobilization. AIP Conference Proceedings, 2021, , .	0.4	0
3	Mobile anti-vehicle barrier made of high-performance fibre-reinforced concrete. Advances in Structural Engineering, 2021, 24, 2364-2374.	2.4	1
4	Study on the properties of cement composites for immobilization of evaporator concentrates. Progress in Nuclear Energy, 2021, 140, 103919.	2.9	4
5	Mechanical properties of irradiated cement pastes for immobilization of evaporator concentrates. Progress in Nuclear Energy, 2020, 127, 103437.	2.9	1
6	Microstructural and micro-mechanical property changes of cement pastes for ILW immobilization due to irradiation. Journal of Nuclear Materials, 2020, 540, 152346.	2.7	1
7	Experimental Investigation of Thin-Walled UHPFRCC Modular Barrier for Blast and Ballistic Protection. Applied Sciences (Switzerland), 2020, 10, 8716.	2.5	3
8	UHPFRC Resistance to Projectile Impact in Dependence on Fibre Content. Springer Proceedings in Materials, 2020, , 63-69.	0.3	1
9	Concrete and cement composites used for radioactive waste deposition. Journal of Environmental Radioactivity, 2017, 178-179, 147-155.	1.7	66
10	Penetration Resistance of Semi-infinite UHPFRC Targets with various Fiber Volume Fractions against Projectile Impact. Procedia Engineering, 2017, 193, 112-119.	1.2	14
11	Response of Thin UHPFRC Targets with Various Fibre Volume Fractions to Deformable Projectile Impact. Procedia Engineering, 2017, 193, 3-10.	1.2	18
12	Identification of Thermo-Mechanical Parameters of Concrete Samples from Nuclear Plant. Key Engineering Materials, 2016, 675-676, 749-755.	0.4	0
13	Resistance of slim UHPFRC targets to projectile impact using in-service bullets. International Journal of Impact Engineering, 2015, 76, 166-177.	5.0	92
14	Influence of Different Mechanical Properties to the Concrete Penetration Resistance. Advanced Materials Research, 2014, 982, 119-124.	0.3	3
15	Numerical Study of the Influence of Internal Blast on the Earth Covered Composite Arch. Advanced Materials Research, 2014, 982, 84-89.	0.3	1
16	Experimental Investigation of Ultra-high Performance Fiber Reinforced Concrete Slabs Subjected to Deformable Projectile Impact. Procedia Engineering, 2013, 65, 120-125.	1.2	50
17	Moment Capacity of FRP Reinforced Concrete Beam Assessment Based on Centerline Geometry. Applied Mechanics and Materials, 2013, 486, 211-216.	0.2	O
18	Numerical analysis of projectile impact on cementitious composite. AIP Conference Proceedings, 2013, ,	0.4	5

#	Article	IF	CITATIONS
19	Development of Ultra High Performance Fiber Reinforced Concrete mixture. , 2012, , .		18
20	Experimental Investigation of Projectile Impact Local Damage on Cementitious Composite Slabs. Applied Mechanics and Materials, 0, 486, 301-306.	0.2	2
21	Destructive and Nondestructive Characteristics of Old Concrete. Advanced Materials Research, 0, 1054, 243-247.	0.3	6
22	Analysis of Powder Samples Extracted from Concrete Structures of Nuclear Plant. Advanced Materials Research, 0, 1054, 1-5.	0.3	4
23	The Issue of Underground Depositing of High Radioactive Waste. Key Engineering Materials, 0, 722, 59-65.	0.4	1
24	The Effect of Elevated Temperatures and Nuclear Radiation on the Properties of Biological Shielding Concrete. Key Engineering Materials, 0, 677, 8-16.	0.4	6
25	Relation between Parameters of Plasters Measured by Non-Destructive and Destructive Methods. Key Engineering Materials, 0, 677, 211-214.	0.4	1
26	Possible Types of Degradation of Concrete in the Power Industry. Key Engineering Materials, 0, 677, 39-42.	0.4	0
27	Evaluation of Crack Formation in Concrete and Basalt Specimens under Cyclic Uniaxial Load Using Acoustic Emission and Computed X-Ray Tomography. Key Engineering Materials, 0, 722, 247-253.	0.4	7