Jason B Baxter

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1774081/jason-b-baxter-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 4,286 65 27 h-index g-index citations papers 65 4,625 5.77 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
62	Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy. <i>Advanced Energy Materials</i> , 2022 , 12, 2102776	21.8	5
61	Distinguishing bulk and surface recombination in CdTe thin films and solar cells using time-resolved terahertz and photoluminescence spectroscopies. <i>Journal of Applied Physics</i> , 2021 , 130, 163104	2.5	О
60	Distinguishing Electron and Hole Dynamics in Functionalized CdSe/CdS Core/Shell Quantum Dots Using Complementary Ultrafast Spectroscopies and Kinetic Modeling. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 31-41	3.8	4
59	A Noble-Transition Alloy Excels at Hot-Carrier Generation in the Near Infrared. <i>Advanced Materials</i> , 2020 , 32, e1906478	24	5
58	Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for HO Synthesis. <i>ACS Applied Materials & Mater</i>	9.5	3
57	Effects of cation composition on carrier dynamics and photovoltaic performance in Cu2ZnSnSe4 monocrystal solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2020 , 205, 110255	6.4	10
56	Nanosecond carrier lifetimes in solution-processed enargite (Cu3AsS4) thin films. <i>Applied Physics Letters</i> , 2020 , 117, 162102	3.4	4
55	Environmental Sustainability of Mixed Cation Perovskite Materials in Photovoltaics Manufacturing. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 16537-16548	8.3	6
54	Electron accepting naphthalene bisimide ligand architectures for modulation of Estacking in nanocrystal hybrid materials. <i>Nanoscale Horizons</i> , 2020 , 5, 1509-1514	10.8	2
53	Relating Carrier Dynamics and Photovoltaic Device Performance of Single-Crystalline Cu2ZnSnSe4. <i>Physical Review Applied</i> , 2019 , 11,	4.3	10
52	Optoelectronic Characterization of Emerging Solar Absorber Cu3AsS4 2019 ,		1
51	Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. <i>Energy</i> , 2019 , 166, 1089-1096	7.9	53
50	Distinguishing Thermal and Electronic Effects in Ultrafast Optical Spectroscopy Using Oxide Heterostructures. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 115-123	3.8	18
49	Passivation and thickness control of highly efficient kesterite solar cells. <i>Applied Physics Letters</i> , 2018 , 113, 033903	3.4	6
48	Solution processed CuSbS2 films for solar cell applications. <i>Thin Solid Films</i> , 2018 , 646, 180-189	2.2	15
47	Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid Air Interface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 4146-4157	3.8	13
46	Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3 (001) Heterointerface. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700183	4.6	8

(2014-2017)

45	Slow Electron⊞ole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole. <i>ACS Energy Letters</i> , 2017 , 2, 2239-2244	20.1	65
44	Ultrafast Charge Carrier Dynamics in Extremely Thin Absorber (ETA) Solar Cells Consisting of CdSe-Coated ZnO Nanowires. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 19504-19512	3.8	9
43	Thin films of copper indium selenide fabricated with high atom economy by electrophoretic deposition of nanocrystals under flow. <i>Chemical Engineering Science</i> , 2016 , 154, 128-135	4.4	5
42	Influence of Depletion Width on Charge Transport and Interfacial Recombination in Extremely Thin Absorber Solar Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H133-H138	3.9	1
41	Static and Dynamic Optical Properties of La1\(\mathbb{\textra}\)SrxFeO3\(\mathbb{\textra}\)The Effects of A-Site and Oxygen Stoichiometry. Chemistry of Materials, 2016 , 28, 97-105	9.6	25
40	Engineering titania nanostructure to tune and improve its photocatalytic activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3966-71	11.5	86
39	Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied & Discrete Amplied & Discrete Amplied & Discrete Amplied</i>	9.5	54
38	Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6495-6504	13	31
37	Methods of photoelectrode characterization with high spatial and temporal resolution. <i>Energy and Environmental Science</i> , 2015 , 8, 2863-2885	35.4	42
36	Dynamic Speciation Modeling to Guide Selection of Complexing Agents for Chemical Bath Deposition: Case Study for ZnS Thin Films. <i>Crystal Growth and Design</i> , 2015 , 15, 4893-4900	3.5	11
35	Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive. <i>ACS Applied Materials & Deposition With ACS Applied Materials & Deposition With </i>	9.5	13
34	Visible light carrier generation in co-doped epitaxial titanate films. <i>Applied Physics Letters</i> , 2015 , 106, 092901	3.4	10
33	SILAR-Deposited Hematite Films for Photoelectrochemical Water Splitting: Effects of Sn, Ti, Thickness, and Nanostructuring. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 4454-4465	3.8	31
32	Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. <i>ACS Nano</i> , 2015 , 9, 1820-8	16.7	53
31	Ultrafast carrier dynamics in nanostructures for solar fuels. <i>Annual Review of Physical Chemistry</i> , 2014 , 65, 423-47	15.7	76
30	Relating Deposition Conditions to Zn(S,O,OH) Thin Film Properties for Photovoltaic Buffer Layers Using a Continuous Flow Microreactor. <i>Chemistry of Materials</i> , 2014 , 26, 6674-6683	9.6	11
29	Tailoring Absorber Thickness and the Absorber-Scaffold Interface in CdSe-Coated ZnO Nanowire Extremely Thin Absorber Solar Cells. <i>Electrochimica Acta</i> , 2014 , 145, 291-299	6.7	10
28	Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments. <i>ACS Applied Materials & Diterfaces</i> , 2014 , 6, 3721-8	9.5	76

27 ZnO Nanowire-Based Solar Cells **2014**, 227-252

26	Employing time-resolved terahertz spectroscopy to analyze carrier dynamics in thin-film Cu2ZnSn(S,Se)4 absorber layers. <i>Applied Physics Letters</i> , 2014 , 104, 253901	3.4	23
25	Microreactor Chemical Bath Deposition of Laterally Graded Cd1\(\text{NZ}\) Thin Films: A Route to High-Throughput Optimization for Photovoltaic Buffer Layers. <i>Chemistry of Materials</i> , 2013 , 25, 297-300.	6 9.6	21
24	Nucleation and Growth of Extremely Thin CdSe Films Electrodeposited from Near-Neutral Electrolytes. <i>Journal of the Electrochemical Society</i> , 2012 , 159, D605-D610	3.9	10
23	Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 020801	2.9	108
22	Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction. <i>Nanotechnology</i> , 2012 , 23, 265701	3.4	9
21	Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth. <i>Langmuir</i> , 2011 , 27, 3672-7	4	103
20	Terahertz spectroscopy. <i>Analytical Chemistry</i> , 2011 , 83, 4342-68	7.8	259
19	Photovoltaic manufacturing: Present status, future prospects, and research needs. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2011 , 29, 030801	2.9	192
18	Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells. <i>Electrochimica Acta</i> , 2011 , 56, 2703-2711	6.7	33
17	In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition. <i>Chemistry of Materials</i> , 2010 , 22, 6162-6170	9.6	52
16	Carrier dynamics in bulk ZnO. I. Intrinsic conductivity measured by terahertz time-domain spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	17
15	Metallorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen. <i>Journal of the Electrochemical Society</i> , 2009 , 156, H52	3.9	20
14	ZnO Nanowires Grown by Chemical Bath Deposition in a Continuous Flow Microreactor. <i>Crystal Growth and Design</i> , 2009 , 9, 4538-4545	3.5	57
13	Microreactor for High-Yield Chemical Bath Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Study. <i>Industrial & Deposition of Semiconductor Nanowires: ZnO Nanowire Case Semiconductor Nanowires: ZnO Nanow</i></i></i></i></i></i>	3.9	29
12	Carrier dynamics in bulk ZnO. II. Transient photoconductivity measured by time-resolved terahertz spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	14
11	Nanoscale design to enable the revolution in renewable energy. <i>Energy and Environmental Science</i> , 2009 , 2, 559	35.4	311
10	Ultrafast Photooxidation of Mn(II)IIerpyridine Complexes Covalently Attached to TiO2 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11982-11990	3.8	77

LIST OF PUBLICATIONS

9	Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25229-39	3.4	329	
8	Effect of ChromiumCold and TitaniumIlitanium NitridePlatinumCold Metallization on Wire/Ribbon Bondability. <i>IEEE Transactions on Advanced Packaging</i> , 2006 , 29, 707-713		20	
7	Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 607-622	6.4	317	
6	Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. <i>Nanotechnology</i> , 2006 , 17, S304-S312	3.4	373	
5	Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films. <i>Journal of Applied Physics</i> , 2005 , 97, 043522	2.5	44	
4	Nanowire-based dye-sensitized solar cells. <i>Applied Physics Letters</i> , 2005 , 86, 053114	3.4	905	
3	Epitaxial growth of ZnO nanowires on a- and c-plane sapphire. Journal of Crystal Growth, 2005, 274, 407	7-4.161	83	
2	Growth and Characterization of ZnO Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 776, 791		1	
1	Growth mechanism and characterization of zinc oxide hexagonal columns. <i>Applied Physics Letters</i> , 2003 , 83, 3797-3799	3.4	106	