
Roberto A Lopez-Anido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1773915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical Modeling and Experimental Investigation of Effective Elastic Properties of the 3D Printed Gyroid Infill. Applied Sciences (Switzerland), 2022, 12, 2180.	2.5	10
2	Effects of Fiber Orientation on the Coefficient of Thermal Expansion of Fiber-Filled Polymer Systems in Large Format Polymer Extrusion-Based Additive Manufacturing. Materials, 2022, 15, 2764.	2.9	10
3	Integration of Material Characterization, Thermoforming Simulation, and As-Formed Structural Analysis for Thermoplastic Composites. Polymers, 2022, 14, 1877.	4.5	4
4	Development of Thermoplastic Composite Reinforced Ultra-High-Performance Concrete Panels for Impact Resistance. Materials, 2021, 14, 2490.	2.9	5
5	Scale and manufacturing effects on tensile strength of marine grade sandwich composite panel joints. Journal of Sandwich Structures and Materials, 2020, 22, 1983-2008.	3.5	1
6	Modeling the hygrothermal creep behavior of wood plastic composite (WPC) lumber made from thermally modified wood. Journal of Thermoplastic Composite Materials, 2020, 33, 1109-1124.	4.2	4
7	Experimental investigation of the hygrothermal creep strain of wood–plastic composite lumber made from thermally modified wood. Journal of Thermoplastic Composite Materials, 2020, 33, 1248-1268.	4.2	14
8	Elasto-Plastic Finite Element Modeling of Short Carbon Fiber Reinforced 3D Printed Acrylonitrile Butadiene Styrene Composites. Jom, 2020, 72, 475-484.	1.9	12
9	The effect of edge gaps on shear strength and rolling shear modulus of cross laminated timber panels. Construction and Building Materials, 2020, 259, 119710.	7.2	8
10	Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS. Materials, 2020, 13, 4985.	2.9	13
11	Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber. Applied Sciences (Switzerland), 2020, 10, 5017.	2.5	4
12	Structural Performance of HDPE and WPC Lumber Components Used in Aquacultural Geodesic Spherical Cages. Polymers, 2020, 12, 26.	4.5	7
13	Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood. Polymers, 2020, 12, 262.	4.5	10
14	Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing, 2019, 30, 100922.	3.0	117
15	Finite element modeling of 3D-printed part with cellular internal structure using homogenized properties. Progress in Additive Manufacturing, 2019, 4, 143-154.	4.8	14
16	Comparison of Surface Treatments for Secondarily Bonded Joints of Marine Grade Composites. Materials Performance and Characterization, 2019, 8, 20180085.	0.3	0
17	Experimental and numerical investigation of splicing of concrete-filled fiber-reinforced polymer tubes. Construction and Building Materials, 2018, 173, 461-473.	7.2	6
18	Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction. Additive Manufacturing, 2018, 22, 187-196.	3.0	35

#	Article	IF	CITATIONS
19	Structural performance of hybrid SPFs-LSL cross-laminated timber panels. Construction and Building Materials, 2017, 149, 156-163.	7.2	43
20	Resistance welding of glass fiber reinforced PET: Effect of weld pressure and heating element geometry. Journal of Reinforced Plastics and Composites, 2016, 35, 974-985.	3.1	18
21	Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing. Composites Part B: Engineering, 2016, 84, 266-276.	12.0	86
22	Behavior of three-dimensional woven carbon composites in single-bolt bearing. Composite Structures, 2015, 127, 175-184.	5.8	30
23	Experimental investigation of three-dimensional woven composites. Composites Part A: Applied Science and Manufacturing, 2015, 73, 242-259.	7.6	82
24	Strain rate and temperature effects of polymer foam core material. Journal of Sandwich Structures and Materials, 2014, 16, 66-87.	3.5	6
25	Effect of Resin Cure Recipe and Ambient Processing Temperature on the Material Properties of Marine Grade Polymer Matrix Composite Materials. Materials Performance and Characterization, 2013, 2, 20120003.	0.3	0
26	Withdrawal Capacity of Plain, Annular Shank, and Helical Shank Nail Fasteners in Spruce-Pine-Fir Lumber. Forest Products Journal, 2013, 63, 213-220.	0.4	1
27	Interlaminar fracture toughness of woven E-glass fabric composites. Journal of Composite Materials, 2012, 46, 1583-1592.	2.4	27
28	Mechanical Property Characterization of Fiber-Reinforced Polymer Wood-Polypropylene Composite Panels Manufactured Using a Double Belt Pressing Technology. Journal of Materials in Civil Engineering, 2012, 24, 1193-1200.	2.9	6
29	Bending behavior of concrete-filled tubular FRP arches for bridge structures. Construction and Building Materials, 2012, 37, 432-439.	7.2	47
30	Time and temperature dependent response of a wood–polypropylene composite. Composites Part A: Applied Science and Manufacturing, 2011, 42, 834-842.	7.6	44
31	Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties. Construction and Building Materials, 2011, 25, 3977-3988.	7.2	84
32	Structural Performance of Wood Plastic Composite Sheet Piling. Journal of Materials in Civil Engineering, 2010, 22, 1235-1243.	2.9	9
33	A Note on Reinforcement of Polymer Matrix Composites Using Carbon Residues Derived From Woody Biomass. Journal of Composite Materials, 2010, 44, 1883-1892.	2.4	2
34	Effect of Strain Rate on Flexural Properties of Wood Plastic Composite Sheet Pile. Forest Products Journal, 2010, 60, 465-472.	0.4	3
35	Variability in the Material Properties of Polymer Matrix Composites for Marine Structures. Journal of ASTM International, 2010, 7, 1-18.	0.2	2
36	Probabilistic Finite Element Analysis of ASTM D6641 Compression Test for Marine Grade Polymer Matrix Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 897-911.	3.1	8

ROBERTO A LOPEZ-ANIDO

#	Article	IF	CITATIONS
37	Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors. Composite Structures, 2009, 89, 224-234.	5.8	83
38	Integrated Monitoring System for Carbon Composite Strands in Cable-Stayed Bridge, Penobscot Narrows, Maine. Transportation Research Record, 2008, 2050, 177-186.	1.9	1
39	Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. Journal of Applied Polymer Science, 2005, 97, 2221-2229.	2.6	33
40	Repair of Wood Piles Using Prefabricated Fiber-Reinforced Polymer Composite Shells. Journal of Performance of Constructed Facilities, 2005, 19, 78-87.	2.0	27
41	Multi-Scale Analyzer for Assessing Processing Uncertainty on Marine Composite Structures. , 2005, , .		Ο
42	Fiber Reinforced Polymer Composite–Wood Pile Interface Characterization by Push-Out Tests. Journal of Composites for Construction, 2004, 8, 360-368.	3.2	14
43	Assessment of Wood Pile Deterioration due to Marine Organisms. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130, 70-76.	1.2	13
44	Freezeâ€Thaw Resistance of Fiber-Reinforced Polymer Composites Adhesive Bonds with Underwater Curing Epoxy. Journal of Materials in Civil Engineering, 2004, 16, 283-286.	2.9	16
45	Electron microprobe imaging for the characterization of polymer matrix composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1075-1080.	7.6	6
46	Carbon fiber-vinyl ester composite reinforcement of wood using the VARTM/SCRIMP fabrication process. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1257-1265.	7.6	41
47	Comparison of the fatigue behaviors of FRP bridge decks and reinforced concrete conventional decks under extreme environmental conditions. Journal of Mechanical Science and Technology, 2003, 17, 1-10.	0.4	12
48	Flexure creep properties of E-glass reinforced polymers. Composite Structures, 2003, 62, 247-253.	5.8	36
49	Bond durability characterization of preservative treated wood and E-glass/phenolic composite interfaces. Composites Science and Technology, 2003, 63, 979-991.	7.8	43
50	Monitoring fungal degradation of E-glass/phenolic fiber reinforced polymer (FRP) composites used in wood reinforcement. International Biodeterioration and Biodegradation, 2003, 51, 157-165.	3.9	24
51	Experimental characterization of FRP composite-wood pile structural response by bending tests. Marine Structures, 2003, 16, 257-274.	3.8	49
52	Structural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge Decks. Journal of Composites for Construction, 2002, 6, 194-203.	3.2	44
53	Warping Solution for Shear Lag in Thin-Walled Orthotropic Composite Beams. Journal of Engineering Mechanics - ASCE, 1996, 122, 449-457.	2.9	26
54	Postbuckling of One-Dimensional Elements with Thin-Walled Angle Section Using Simplified Models*. Mechanics Based Design of Structures and Machines, 1996, 24, 475-497.	0.6	0

#	Article	IF	CITATIONS
55	Macroapproach Closed-Form Series Solution for Orthotropic Plates. Journal of Structural Engineering, 1995, 121, 420-432.	3.4	5
56	Experimental Evaluation of Stiffness of Laminated Composite Beam Elements under Flexure. Journal of Reinforced Plastics and Composites, 1995, 14, 349-361.	3.1	22
57	On the Mechanics of Thin-Walled Laminated Composite Beams. Journal of Composite Materials, 1993, 27, 806-829.	2.4	100