James B Mcquaid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1773900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland's Bare-Ice Albedo. Remote Sensing, 2022, 14, 62.	1.8	4
2	Rapid metal pollutant deposition from the volcanic plume of Kīlauea, Hawai'i. Communications Earth & Environment, 2021, 2, .	2.6	15
3	Mineral and biological ice-nucleating particles above the South East of the British Isles. Environmental Science Atmospheres, 2021, 1, 176-191.	0.9	9
4	Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nature Communications, 2021, 12, 570.	5.8	50
5	Impact of the 2019/2020 Australian Megafires on Air Quality and Health. GeoHealth, 2021, 5, e2021GH000454.	1.9	16
6	Iceland is an episodic source of atmospheric ice-nucleating particles relevant for mixed-phase clouds. Science Advances, 2020, 6, eaba8137.	4.7	33
7	Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5694-5705.	3.3	81
8	Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere, 2020, 14, 309-330.	1.5	78
9	Megacity and local contributions to regional air pollution: an aircraft case study over London. Atmospheric Chemistry and Physics, 2020, 20, 7193-7216.	1.9	6
10	Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England. Environmental Research Communications, 2020, 2, 031001.	0.9	5
11	Impact on air quality and health due to the Saddleworth Moor fire in northern England. Environmental Research Letters, 2020, 15, 074018.	2.2	8
12	A Major Combustion Aerosol Event Had a Negligible Impact on the Atmospheric Iceâ€Nucleating Particle Population. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032938.	1.2	14
13	The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmospheric Chemistry and Physics, 2019, 19, 11343-11361.	1.9	50
14	Characterisation of the filter inlet system on the FAAM BAe-146 research aircraft and its use for size-resolved aerosol composition measurements. Atmospheric Measurement Techniques, 2019, 12, 5741-5763.	1.2	14
15	Atmospheric Iceâ€Nucleating Particles in the Dusty Tropical Atlantic. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2175-2193.	1.2	66
16	Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 17225-17257.	1.9	80
17	An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing. Atmospheric Measurement Techniques, 2018, 11, 5629-5641.	1.2	22
18	Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe. Scientific Reports, 2018, 8, 13821.	1.6	56

JAMES B MCQUAID

#	Article	IF	CITATIONS
19	The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. Microbial Genomics, 2018, 4, .	1.0	39
20	New Saharan wind observations reveal substantial biases in analysed dustâ€generating winds. Atmospheric Science Letters, 2017, 18, 366-372.	0.8	20
21	Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign. Atmospheric Chemistry and Physics, 2016, 16, 4063-4079.	1.9	24
22	Lagrangian dust model simulations for a case of moist convective dust emission and transport in the western Sahara region during Fennec/LADUNEX. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6117-6144.	1.2	20
23	Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 8479-8520.	1.9	57
24	Airborne observations of regional variation in fluorescent aerosol across the United States. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1153-1170.	1.2	93
25	The Turbulent Structure and Diurnal Growth of the Saharan Atmospheric Boundary Layer. Journals of the Atmospheric Sciences, 2015, 72, 693-713.	0.6	58
26	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	1.7	105
27	Quantifying particle size and turbulent scale dependence of dust flux in the Sahara using aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7577-7598.	1.2	35
28	Laboratory analysis of the effects of elevated atmospheric carbon dioxide on respiration in biological soil crusts. Journal of Arid Environments, 2013, 98, 52-59.	1.2	18
29	Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersiteâ€2 during the intensive observation period in June 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8426-8447.	1.2	52
30	The Fennec Automatic Weather Station (AWS) Network: Monitoring the Saharan Climate System. Journal of Atmospheric and Oceanic Technology, 2013, 30, 709-724.	0.5	39
31	Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmospheric Chemistry and Physics, 2013, 13, 303-325.	1.9	172
32	Meteorology and dust in the central Sahara: Observations from Fennec supersiteâ€1 during the June 2011 Intensive Observation Period. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4069-4089.	1.2	123
33	Airborne measurements of trace gases and aerosols over the London metropolitan region. Atmospheric Chemistry and Physics, 2012, 12, 5163-5187.	1.9	43
34	Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	90
35	South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.	1.9	119
36	The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3177-3195.	1.8	36

JAMES B MCQUAID

#	Article	IF	CITATIONS
37	Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production. Atmospheric Chemistry and Physics, 2010, 10, 3027-3046.	1.9	58
38	HO _x observations over West Africa during AMMA: impact of isoprene and NO _x . Atmospheric Chemistry and Physics, 2010, 10, 9415-9429.	1.9	59
39	Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18447-18451.	3.3	161
40	Physical Exchanges at the Air–Sea Interface: UK–SOLAS Field Measurements. Bulletin of the American Meteorological Society, 2009, 90, 629-644.	1.7	52
41	Secondary organic aerosol from biogenic VOCs over West Africa during AMMA. Atmospheric Chemistry and Physics, 2009, 9, 3841-3850.	1.9	85
42	Direct estimates of emissions from the megacity of Lagos. Atmospheric Chemistry and Physics, 2009, 9, 8471-8477.	1.9	55
43	Supplement to Physical Exchanges at the Air–Sea Interface: UK–SOLAS Field Measurements. Bulletin of the American Meteorological Society, 2009, 90, ES9-ES16.	1.7	5
44	A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust. Atmospheric Measurement Techniques, 2009, 2, 221-229.	1.2	16
45	On the composition of Caribbean maritime aerosol particles measured during RICO. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1059-1063.	1.0	12
46	Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature, 2008, 453, 1232-1235.	13.7	432
47	Biogenic nitrogen oxide emissions from soils: impact on NO _x and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis): observational study. Atmospheric Chemistry and Physics, 2008, 8, 2285-2297.	1.9	73
48	Chemical composition observed over the mid-Atlantic and the detection of pollution signatures far from source regions. Journal of Geophysical Research, 2007, 112, .	3.3	70
49	Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses. Journal of Geophysical Research, 2007, 112, .	3.3	31
50	Bromoform in tropical Atlantic air from 25°N to 25°S. Geophysical Research Letters, 2007, 34, .	1.5	27
51	Aerosol Direct Radiative Impact Experiment (ADRIEX) overview. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 3-15.	1.0	32
52	Intercomparison of VACC- and AMS-derived nitrate, sulphate and ammonium aerosol loadings during ADRIEX. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 77-84.	1.0	10
53	Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment. Journal of Geophysical Research, 2006, 111, .	3.3	60
54	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	1.9	65

JAMES B MCQUAID

#	Article	IF	CITATIONS
55	Processes controlling the concentration of hydroperoxides at Jungfraujoch Observatory, Switzerland. Atmospheric Chemistry and Physics, 2006, 6, 5525-5536.	1.9	30
56	Two high-speed, portable GC systems designed for the measurement of non-methane hydrocarbons and PAN: Results from the Jungfraujoch High Altitude Observatory. Journal of Environmental Monitoring, 2004, 6, 234.	2.1	55
57	Trace gas chemistry in a young biomass burning plume over Namibia: Observations and model simulations. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	92
58	Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe. Journal of Geophysical Research, 2003, 108, .	3.3	36
59	Eastern Atlantic Spring Experiment 1997 (EASE97) 2. Comparisons of model concentrations of OH, HO2, and RO2with measurements. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	55
60	Non-methane hydrocarbons in the Arctic boundary layer. Atmospheric Environment, 2002, 36, 3217-3229.	1.9	41
61	Kinetics of the reactions of OH with 3-methyl-2-cyclohexen-1-one and 3,5,5-trimethyl-2-cyclohexen-1-one under simulated atmospheric conditions. International Journal of Chemical Kinetics, 2002, 34, 7-11.	1.0	3
62	A note on the emission of nitrogen oxides from silage in opened bunker silos. Environmental Monitoring and Assessment, 2002, 74, 209-215.	1.3	8
63	A comparison of modulating interface technologies in comprehensive two-dimensional gas chromatography (GCĩ¿½GC). , 2000, 12, 187-193.		28
64	A detailed case study of isoprene chemistry during the EASE96 Mace Head campaign. Atmospheric Environment, 2000, 34, 2827-2836.	1.9	32
65	Evaluation of a Lagrangian box model using field measurements from EASE (Eastern Atlantic Summer) Tj ETQq1 1	0,784314	l rgBT /Overl
66	A comparison of modulating interface technologies in comprehensive two-dimensional gas chromatography (GC×GC). , 2000, 12, 187.		1
67	Modeling OH, HO2, and RO2radicals in the marine boundary layer: 1. Model construction and comparison with field measurements. Journal of Geophysical Research, 1999, 104, 30241-30255.	3.3	126
68	Title is missing!. Journal of Atmospheric Chemistry, 1999, 34, 185-205.	1.4	6
69	Diurnal cycles of short-lived tropospheric alkenes at a north Atlantic coastal site. Atmospheric Environment, 1999, 33, 2417-2422.	1.9	35
70	The Use of the Helium Ionization Detector for Gas Chromatographic Monitoring of Trace Atmospheric Components. Journal of High Resolution Chromatography, 1998, 21, 75-80.	2.0	28
71	Sub-ppt Atmospheric Measurements Using PTV-GC-FID and Real-Time Digital Signal Processing. Journal of High Resolution Chromatography, 1998, 21, 181-184.	2.0	9
72	Title is missing!. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2921-2927.	1.7	43

5

#	Article	IF	CITATIONS
73	Atmospheric monitoring of volatile organic compounds using programmed temperature vaporization injection. Journal of High Resolution Chromatography, 1996, 19, 686-690.	2.0	46