
Minmin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1773560/publications.pdf Version: 2024-02-01

Μινιμίν Ζητι

#	Article	IF	CITATIONS
1	A general strategy towards controllable replication of butterfly wings for robust light photocatalysis. Journal of Materials Science and Technology, 2022, 105, 286-292.	5.6	6
2	Hybrid graphene-NiW nanofiber transparent electrodes for all-nanofiber-based pressure sensor. Journal of Materials Science, 2022, 57, 2627-2635.	1.7	3
3	A Flexible and Ultraâ€Wideband Terahertz Wave Absorber Based on Pyramidâ€Shaped Carbon Nanotube Array via Femtosecond‣aser Microprocessing and Twoâ€Step Transfer Technique. Advanced Materials Interfaces, 2022, 9, .	1.9	5
4	Piezoelectric polymer nanofibers for pressure sensors and their applications in human activity monitoring. RSC Advances, 2020, 10, 21887-21894.	1.7	32
5	Dielectric dispersion and superior thermal characteristics in isotope-enriched hexagonal boron nitride thin films: evaluation as thermally self-dissipating dielectrics for GaN transistors. Journal of Materials Chemistry C, 2020, 8, 9558-9568.	2.7	4
6	Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors. Journal of Materials Chemistry C, 2020, 8, 4421-4431.	2.7	5
7	Effects of precursors' purity on graphene quality: Synthesis and thermoelectric effect. AIP Advances, 2020, 10, .	0.6	2
8	A flexible and ultra-broadband terahertz wave absorber based on graphene–vertically aligned carbon nanotube hybrids. Journal of Materials Chemistry C, 2020, 8, 7244-7252.	2.7	16
9	Wafer-scale vertically aligned carbon nanotubes for broadband terahertz wave absorption. Carbon, 2019, 154, 503-509.	5.4	20
10	Structural insight into the optical and electro-optic properties of lead zirconate titanate for high-performance photonic devices. Ceramics International, 2019, 45, 22324-22330.	2.3	13
11	Flexible Ultra-Wideband Terahertz Absorber Based on Vertically Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 43671-43680.	4.0	39
12	Graphene–Metal Nanoparticles for Enhancing Thermoelectric Power Factor. IEEE Nanotechnology Magazine, 2019, 18, 1114-1118.	1.1	5
13	Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2019, 29, 1902663.	7.8	37
14	Flexible thermal rectifier based on macroscopic PDMS@graphite composite film with asymmetric cone-shape interfaces. Carbon, 2018, 126, 464-471.	5.4	11
15	Strong electro-optically active Ni-substituted Pb(Zr _{0.35} Ti _{0.65})O ₃ thin films: toward integrated active and durable photonic devices. Journal of Materials Chemistry C, 2018, 6, 12919-12927.	2.7	9
16	Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation. Journal of Applied Physics, 2018, 124, .	1.1	8
17	Concentric and Spiral Few-Layer Graphene: Growth Driven by Interfacial Nucleation vs Screw Dislocation. Chemistry of Materials, 2018, 30, 6858-6866.	3.2	21
18	Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale, 2018, 10, 16243-16251.	2.8	15

Міммім Zhu

#	Article	IF	CITATIONS
19	Alkyl ethoxylate assisted liquid phase exfoliation of BN nanosheet and its application as interphase for oxide/oxide composites. Ceramics International, 2018, 44, 21461-21469.	2.3	11
20	Composition-controlled synthesis and tunable optical properties of ternary boron carbonitride nanotubes. RSC Advances, 2017, 7, 12511-12517.	1.7	14
21	The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution. Small, 2017, 13, 1603411.	5.2	15
22	Multifunctional and highly compressive cross-linker-free sponge based on reduced graphene oxide and boron nitride nanosheets. Chemical Engineering Journal, 2017, 328, 825-833.	6.6	30
23	Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator. Applied Surface Science, 2017, 425, 1059-1065.	3.1	8
24	Ferroelectric BiFeO3 thin-film optical modulators. Applied Physics Letters, 2016, 108, .	1.5	12
25	Trimethylamine Borane: A New Single-Source Precursor for Monolayer h-BN Single Crystals and h-BCN Thin Films. Chemistry of Materials, 2016, 28, 2180-2190.	3.2	62
26	Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion. ACS Applied Materials & amp; Interfaces, 2016, 8, 502-510.	4.0	78
27	A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale, 2015, 7, 14730-14737.	2.8	26
28	Polymer-Enriched 3D Graphene Foams for Biomedical Applications. ACS Applied Materials & Interfaces, 2015, 7, 8275-8283.	4.0	73
29	Optical and electro-optic anisotropy of epitaxial PZT thin films. Applied Physics Letters, 2015, 107, .	1.5	30
30	Low temperature growth of graphene on Cu–Ni alloy nanofibers for stable, flexible electrodes. Nanoscale, 2014, 6, 5110.	2.8	23
31			

Міммім Zhu

#	Article	IF	CITATIONS
37	Growth mode of sol-gel derived PLT seeding layers on glass substrates and its effect on templating the oriented growth of PLZT thin films. Journal of Applied Physics, 2009, 105, .	1.1	16
38	Optical and electro-optic properties of micrometric thick lead zirconate titanate films on (Pb0.86,La0.14)TiO3/glass. Journal of Applied Physics, 2009, 106, 023113.	1.1	9
39	Perovskite crystallization kinetics and dielectric properties of the PMN-PT films prepared by polymer-modified sol-gel processing. Journal of Materials Research, 2009, 24, 1576-1584.	1.2	16
40	Direct crystallization of perovskite phase in PMN–PT thin films prepared by polyvinylpyrrolidone modified sol–gel processing and their properties. Journal of Solid State Chemistry, 2009, 182, 1780-1785.	1.4	7
41	Optical and Electric Properties of Aligned-Growing Ta ₂ O ₅ Nanorods. Materials Transactions, 2008, 49, 2288-2291.	0.4	15
42	NiO films consisting of vertically aligned cone-shaped NiO rods. Applied Physics Letters, 2006, 88, 033101.	1.5	83
43	Intense photoluminescence from amorphous tantalum oxide films. Applied Physics Letters, 2006, 89, 021915.	1.5	72
44	Melting and optical properties of ZnO nanorods. Applied Physics Letters, 2006, 88, 061913.	1.5	81
45	Synthesis and photoluminescence of aligned ZnO nanorods by thermal decomposition of zinc acetate at a substrate temperature of â^¼250 °C. Journal Physics D: Applied Physics, 2005, 38, 3934-3937.	1.3	41