Wengen Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772986/publications.pdf

Version: 2024-02-01

516710 526287 33 785 16 27 citations g-index h-index papers 34 34 34 655 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. Nano Letters, 2018, 18, 6009-6016.	9.1	104
2	Robust superlubricity by strain engineering. Nanoscale, 2019, 11, 2186-2193.	5.6	67
3	Negative Friction Coefficients in Superlubric Graphite–Hexagonal Boron Nitride Heterojunctions. Physical Review Letters, 2019, 122, 076102.	7.8	63
4	Controllable Thermal Conductivity in Twisted Homogeneous Interfaces of Graphene and Hexagonal Boron Nitride. Nano Letters, 2020, 20, 7513-7518.	9.1	50
5	Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36169-36176.	8.0	47
6	Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface. ACS Nano, 2016, 10, 713-722.	14.6	40
7	Frictional Properties of Nanojunctions Including Atomically Thin Sheets. Nano Letters, 2016, 16, 1878-1883.	9.1	39
8	Mechanical and Tribological Properties of Layered Materials under High Pressure: Assessing the Importance of Many-Body Dispersion Effects. Journal of Chemical Theory and Computation, 2020, 16, 666-676.	5.3	39
9	Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure. Friction, 2020, 8, 462-470.	6.4	27
10	Atomic-scale sliding friction on a contaminated surface. Nanoscale, 2018, 10, 6375-6381.	5.6	26
11	Load and Velocity Dependence of Friction Mediated by Dynamics of Interfacial Contacts. Physical Review Letters, 2019, 123, 116102.	7.8	26
12	4â€node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe meshâ€distortion. International Journal for Numerical Methods in Engineering, 2018, 113, 1589-1606.	2.8	25
13	The Princess and the Nanoscale Pea: Long-Range Penetration of Surface Distortions into Layered Materials Stacks. ACS Nano, 2019, 13, 7603-7609.	14.6	23
14	The Origin of Moiréâ€Level Stickâ€Slip Behavior on Graphene/ <i>h</i> à€BN Heterostructures. Advanced Functional Materials, 2022, 32, .	14.9	20
15	Optical methods for determining thicknesses of few-layer graphene flakes. Nanotechnology, 2013, 24, 505701.	2.6	19
16	Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 604-610.	3.4	19
17	Parity-Dependent MoirA© Superlattices in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Graphene</mml:mi><mml:mo>/</mml:mo><mml:mi>h</mml:mi><mml:ri>Heterostructures: A Route to Mechanomutable Metamaterials. Physical Review Letters, 2021, 126,</mml:ri></mml:mrow></mml:math>	mt ex t>â^'<	k/mml:mtext>
18	216101. Load-velocity-temperature relationship in frictional response of microscopic contacts. Journal of the Mechanics and Physics of Solids, 2020, 137, 103880.	4.8	16

#	Article	IF	CITATIONS
19	Mechanisms of frictional energy dissipation at graphene grain boundaries. Physical Review B, 2021, 103,	3.2	16
20	Superlubric polycrystalline graphene interfaces. Nature Communications, 2021, 12, 5694.	12.8	14
21	Anisotropic Interlayer Force Field for Transition Metal Dichalcogenides: The Case of Molybdenum Disulfide. Journal of Chemical Theory and Computation, 2021, 17, 7237-7245.	5.3	12
22	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	21.0	12
23	Computational Prediction of Superlubric Layered Heterojunctions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33600-33608.	8.0	11
24	Superplastic Nanomolding of Highly Ordered Metallic Subâ€Micrometer Pillars Arrays for Surface Enhanced Raman Scattering. Advanced Materials Technologies, 2022, 7, 2100891.	5.8	8
25	Static friction boost in edge-driven incommensurate contacts. Physical Review Materials, 2018, 2, .	2.4	7
26	Thermodynamic model of twisted bilayer graphene: Entropy matters. Journal of the Mechanics and Physics of Solids, 2022, 167, 104972.	4.8	7
27	Registry-Dependent Peeling of Layered Material Interfaces: The Case of Graphene Nanoribbons on Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43533-43539.	8.0	6
28	Pointwise Plucking of Suspended Carbon Nanotubes. Nano Letters, 2012, 12, 3663-3667.	9.1	5
29	Registry-Dependent Potential for Interfaces of Gold with Graphitic Systems. Journal of Chemical Theory and Computation, 2021, 17, 7215-7223.	5.3	5
30	Finite temperature mechanics of multilayer 2D materials. Extreme Mechanics Letters, 2022, 52, 101612.	4.1	5
31	Spontaneous Movement of a Droplet on a Conical Substrate: Theoretical Analysis of the Driving Force. ACS Omega, 2022, 7, 20975-20982.	3.5	5
32	Microscopic mechanisms of frictional aging. Journal of the Mechanics and Physics of Solids, 2022, 166, 104944.	4.8	3
33	Bilayer MoS2 quantum dots with tunable magnetism and spin. AIP Advances, 2018, 8, 115103.	1.3	2