Thomas Eiland Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards the Optimal Screening Collection: A Synthesis Strategy. Angewandte Chemie - International Edition, 2008, 47, 48-56.	13.8	507
2	Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2012, 78, 5060-5069.	3.1	234
3	Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chemical Reviews, 2019, 119, 11245-11290.	47.7	173
4	Scaffold Diversity from <i>N</i> -Acyliminium Ions. Chemical Reviews, 2017, 117, 7811-7856.	47.7	155
5	Disulfide Bond-Containing Ajoene Analogues As Novel Quorum Sensing Inhibitors of <i>Pseudomonas aeruginosa</i> . Journal of Medicinal Chemistry, 2017, 60, 215-227.	6.4	98
6	Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria. Infection and Immunity, 2013, 81, 2705-2713.	2.2	81
7	Synthesis of Heterocycles through a Ruthenium atalyzed Tandem Ring losing Metathesis/Isomerization/Nâ€Acyliminium Cyclization Sequence. Angewandte Chemie - International Edition, 2011, 50, 5188-5191.	13.8	80
8	C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Scientific Reports, 2015, 5, 10052.	3.3	72
9	Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Frontiers in Chemistry, 2019, 7, 742.	3.6	70
10	In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm–dispersed cells via c-di-GMP manipulation. Nature Protocols, 2015, 10, 1165-1180.	12.0	63
11	A broad range quorum sensing inhibitor working through sRNA inhibition. Scientific Reports, 2017, 7, 9857.	3.3	60
12	Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Scientific Reports, 2018, 8, 1155.	3.3	60
13	Multiple diguanylate cyclase oordinated regulation of pyoverdine synthesis in <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> . Environmental Microbiology Reports, 2015, 7, 498-507.	2.4	47
14	Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization. ACS Combinatorial Science, 2012, 14, 253-257.	3.8	46
15	Comparative Systems Biology Analysis To Study the Mode of Action of the Isothiocyanate Compound Iberin on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2014, 58, 6648-6659.	3.2	43
16	Itaconimides as Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2018, 8, 443.	3.9	43
17	Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. Npj Biofilms and Microbiomes, 2021, 7, 59.	6.4	37
18	Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa. Bioorganic and Medicinal Chemistry, 2015, 23, 1638-1650.	3.0	33

#	Article	IF	CITATIONS
19	Petasis Three-Component Coupling Reactions of Hydrazides for the Synthesis of Oxadiazolones and Oxazolidinones. Organic Letters, 2012, 14, 640-643.	4.6	30
20	Photolabile Linkers for Solid-Phase Synthesis. ACS Combinatorial Science, 2018, 20, 377-399.	3.8	30
21	A Fourâ€Component Reaction for the Synthesis of Dioxadiazaborocines. Angewandte Chemie - International Edition, 2015, 54, 8395-8397.	13.8	29
22	Stereoselective Synthesis of (E)-β-Tributylstannyl-α,β-unsaturated Ketones: Construction of a Key Intermediate for the Total Synthesis of Zoanthamine. Journal of Organic Chemistry, 2002, 67, 6366-6371.	3.2	25
23	Repurposing the anticancer drug cisplatin with the aim of developing novel <i>Pseudomonas aeruginosa</i> infection control agents. Beilstein Journal of Organic Chemistry, 2018, 14, 3059-3069.	2.2	25
24	Bead-based screening in chemical biology and drug discovery. Chemical Communications, 2018, 54, 6759-6771.	4.1	25
25	Catalytic Enantioselective Synthesis of Tetrahydocarbazoles and Exocyclic Pictet–Spengler-Type Reactions. Organic Letters, 2016, 18, 5990-5993.	4.6	22
26	Highly Stereoselective Addition of Stannylcuprates to Alkynones. Journal of Organic Chemistry, 2002, 67, 7309-7313.	3.2	21
27	The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology (United Kingdom), 2016, 162, 1797-1807.	1.8	17
28	Synthesis of (Arylamido)pyrrolidinone Libraries through Ritterâ€Type Cascade Reactions of Dihydroxylactams. European Journal of Organic Chemistry, 2015, 2015, 5633-5639.	2.4	16
29	Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet–Spengler cyclization/metal-catalyzed cross coupling/amidation sequence. Bioorganic and Medicinal Chemistry, 2015, 23, 2646-2649.	3.0	16
30	Synthesis of a Natural Productâ€Like Compound Collection through Oxidative Cleavage and Cyclization of Linear Peptides. Angewandte Chemie - International Edition, 2014, 53, 11778-11782.	13.8	15
31	Combining the Petasis 3-Component Reaction with Multiple Modes of Cyclization: A Build/Couple/Pair Strategy for the Synthesis of Densely Functionalized Small Molecules. ACS Combinatorial Science, 2015, 17, 19-23.	3.8	15
32	Synthesis of 1,4,5 trisubstituted γ-lactams via a 3-component cascade reaction. Bioorganic and Medicinal Chemistry, 2015, 23, 2695-2698.	3.0	15
33	Inâ€Bead Screening of Hydroxamic Acids for the Identification of HDAC Inhibitors. Angewandte Chemie - International Edition, 2016, 55, 4472-4475.	13.8	15
34	Reductive Cyclization and Petasisâ€Like Reaction for the Synthesis of Functionalized γâ€Lactams. European Journal of Organic Chemistry, 2015, 2015, 2346-2350.	2.4	14
35	Oxidative Modification of Tryptophan-Containing Peptides. ACS Combinatorial Science, 2018, 20, 344-349.	3.8	14
36	Petasis three-component reactions for the synthesis of diverse heterocyclic scaffolds. Drug Discovery Today: Technologies, 2018, 29, 27-33.	4.0	14

THOMAS EILAND NIELSEN

#	Article	IF	CITATIONS
37	A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins. Tetrahedron Letters, 2011, 52, 7121-7124.	1.4	13
38	Tandem Mannich/Diels–Alder reactions for the synthesis of indole compound libraries. RSC Advances, 2016, 6, 46654-46657.	3.6	11
39	A metal-catalyzed enyne-cyclization step for the synthesis of bi- and tricyclic scaffolds amenable to molecular library production. Organic and Biomolecular Chemistry, 2016, 14, 6947-6950.	2.8	11
40	Solvent-Controlled Chemoselectivity in the Photolytic Release of Hydroxamic Acids and Carboxamides from Solid Support. Organic Letters, 2017, 19, 3263-3266.	4.6	10
41	Diastereoselective synthesis of novel heterocyclic scaffolds through tandem Petasis 3-component/intramolecular Diels–Alder and ROM–RCM reactions. Chemical Communications, 2017, 53, 9410-9413.	4.1	10
42	Synthesis and biological evaluation of dihydropyrano-[2,3-c]pyrazoles as a new class of PPARÎ ³ partial agonists. PLoS ONE, 2017, 12, e0162642.	2.5	10
43	Petasis/Diels–Alder/Cyclization Cascade Reactions for the Generation of Scaffolds with Multiple Stereogenic Centers and Orthogonal Handles for Library Production. European Journal of Organic Chemistry, 2018, 2018, 5023-5029.	2.4	9
44	Generation of a Heteropolycyclic and sp ³ â€Rich Scaffold for Library Synthesis from a Highly Diastereoselective Petasis/Diels–Alder and ROM–RCM Reaction Sequence. European Journal of Organic Chemistry, 2019, 2019, 1061-1076.	2.4	7
45	An Improved Protocol for the Synthesis of 1-(Mesitylenesulfonyl)-3-nitro-1,2,4-triazole (MSNT). Organic Preparations and Procedures International, 2014, 46, 267-271.	1.3	6
46	Synthesis of Substituted γ―and Î′â€Lactams through Mannichâ€Type Reactions of Solidâ€Supported <i>N</i> â€Acyliminium Ions. European Journal of Organic Chemistry, 2015, 2015, 3524-3530.	2.4	6
47	A Linker for the Solid-Phase Synthesis of Hydroxamic Acids and Identification of HDAC6 Inhibitors. ACS Combinatorial Science, 2017, 19, 657-669.	3.8	6
48	Solid-Phase Synthesis of NH-1,2,3-Triazoles Using 4,4′-Bismethoxybenzhydryl Azide. Synlett, 2014, 25, 1891-1895.	1.8	4
49	SAR study of 4-arylazo-3,5-diamino-1 <i>H</i> -pyrazoles: identification of small molecules that induce dispersal of <i>Pseudomonas aeruginosa</i> biofilms. RSC Medicinal Chemistry, 2021, 12, 1868-1878.	3.9	4
50	Synthesis of 4-Halogenated 3-Fluoro-6-methoxyquinolines: Key Building Blocks for the Synthesis of Antibiotics. Synthesis, 2014, 46, 3263-3267.	2.3	2
51	Solid-phase synthesis and biological evaluation of piperazine-based novel bacterial topoisomerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2022, 57, 128499.	2.2	1
52	Petasis/Diels–Alder/Cyclization Cascade Reactions for the Generation of Scaffolds with Multiple Stereogenic Centers and Orthogonal Handles for Library Production. European Journal of Organic Chemistry, 2018, 2018, 6596-6596.	2.4	0