
Charles Hoffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods to Assess Phosphodiesterase and/or Adenylyl Cyclase Activity Via Heterologous Expression in Fission Yeast. Methods in Molecular Biology, 2022, 2483, 93-104.	0.4	Ο
2	lncRNA transcription induces meiotic recombination through chromatin remodelling in fission yeast. Communications Biology, 2021, 4, 295.	2.0	7
3	Reciprocal stabilization of transcription factor binding integrates two signaling pathways to regulate fission yeast <i>fbp1</i> transcription. Nucleic Acids Research, 2021, 49, 9809-9820.	6.5	6
4	cAMP export by the fission yeast. MicroPublication Biology, 2021, 2021, .	0.1	0
5	Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Frontiers in Pharmacology, 2021, 12, 833156.	1.6	Ο
6	Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages. PLoS Neglected Tropical Diseases, 2020, 14, e0008447.	1.3	2
7	Towards spectrally selective catastrophic response. Physical Review E, 2020, 101, 062415.	0.8	2
8	lncRNA transcriptional initiation induces chromatin remodeling within a limited range in the fission yeast fbp1 promoter. Scientific Reports, 2019, 9, 299.	1.6	9
9	A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening. Cellular Signalling, 2019, 60, 114-121.	1.7	7
10	Histone Chaperone Asf1 Is Required for the Establishment of Repressive Chromatin in Schizosaccharomyces pombe fbp1 Gene Repression. Molecular and Cellular Biology, 2018, 38, .	1.1	4
11	Identification and characterization of a potent and biologically-active PDE4/7 inhibitor via fission yeast-based assays. Cellular Signalling, 2017, 40, 73-80.	1.7	13
12	Recruitment and delivery of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by Tup1-family corepressors. Nucleic Acids Research, 2017, 45, 9361-9371.	6.5	13
13	Interplay between chromatin modulators and histone acetylation regulates the formation of accessible chromatin in the upstream regulatory region of fission yeast <i>fbp1</i> . Genes and Genetic Systems, 2017, 92, 267-276.	0.2	14
14	A Brief History of <i>Schizosaccharomyces pombe</i> Research: A Perspective Over the Past 70 Years. Genetics, 2016, 203, 621-629.	1.2	40
15	Anti-inflammatory effects of novel barbituric acid derivatives in T lymphocytes. International Immunopharmacology, 2016, 38, 223-232.	1.7	20
16	Local potentiation of stress-responsive genes by upstream noncoding transcription. Nucleic Acids Research, 2016, 44, 5174-5189.	6.5	33
17	Antagonistic Controls of Chromatin and mRNA Start Site Selection by Tup Family Corepressors and the CCAAT-Binding Factor. Molecular and Cellular Biology, 2015, 35, 847-855.	1.1	23
18	An Ancient Yeast for Young Geneticists: A Primer on the <i>Schizosaccharomyces pombe</i> Model System, Genetics, 2015, 201, 403-423.	1.2	180

CHARLES HOFFMAN

#	Article	IF	CITATIONS
19	Fission Yeast-Based High-Throughput Screens for PKA Pathway Inhibitors and Activators. Methods in Molecular Biology, 2015, 1263, 77-91.	0.4	6
20	A Yeast-Based High-Throughput Screen for Modulators of Phosphodiesterase Activity. Methods in Molecular Biology, 2015, 1294, 181-190.	0.4	3
21	Sck1 Negatively Regulates Gpa2-Mediated Glucose Signaling in Schizosaccharomyces pombe. Eukaryotic Cell, 2014, 13, 202-208.	3.4	6
22	Use of PKA-mediated phenotypes for genetic and small-molecule screens in <i>Schizosaccharomyces pombe</i> . Biochemical Society Transactions, 2013, 41, 1692-1695.	1.6	7
23	A Yeast-Based Chemical Screen Identifies a PDE Inhibitor That Elevates Steroidogenesis in Mouse Leydig Cells via PDE8 and PDE4 Inhibition. PLoS ONE, 2013, 8, e71279.	1.1	25
24	Schizosaccharomyces pombe Hat1 (Kat1) Is Associated with Mis16 and Is Required for Telomeric Silencing. Eukaryotic Cell, 2012, 11, 1095-1103.	3.4	17
25	Identification of Biologically Active PDE11-Selective Inhibitors Using a Yeast-Based High-Throughput Screen. Chemistry and Biology, 2012, 19, 155-163.	6.2	53
26	Use of a ura5 +–lys7 + cassette to construct unmarked gene knock-ins in Schizosaccharomyces pombe. Current Genetics, 2012, 58, 59-64.	0.8	16
27	Use of a Schizosaccharomyces pombe PKA-repressible reporter to study cGMP metabolising phosphodiesterases. Cellular Signalling, 2011, 23, 594-601.	1.7	19
28	A Fission Yeast-Based Platform for Phosphodiesterase Inhibitor HTSs and Analyses of Phosphodiesterase Activity. Handbook of Experimental Pharmacology, 2011, , 135-149.	0.9	12
29	Activated Alleles of the Schizosaccharomyces pombe <i>gpa2</i> ⁺ Gα Gene Identify Residues Involved in GDP-GTP Exchange. Eukaryotic Cell, 2010, 9, 626-633.	3.4	12
30	New Classes of PDE7 Inhibitors Identified by a Fission Yeast-Based HTS. Journal of Biomolecular Screening, 2010, 15, 359-367.	2.6	30
31	Pro-Aging Effects of Glucose Signaling through a G Protein-Coupled Glucose Receptor in Fission Yeast. PLoS Genetics, 2009, 5, e1000408.	1.5	89
32	Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature, 2008, 456, 130-134.	13.7	249
33	Development of a Fission Yeast-Based High-Throughput Screen to Identify Chemical Regulators of cAMP Phosphodiesterases. Journal of Biomolecular Screening, 2008, 13, 62-71.	2.6	41
34	<i>Schizosaccharomyces pombe</i> Hsp90/Git10 Is Required for Glucose/cAMP Signaling. Genetics, 2008, 178, 1927-1936.	1.2	21
35	Propping Up Our Knowledge of G Protein Signaling Pathways: Diverse Functions of Putative Noncanonical Gbeta Subunits in Fungi. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe3-pe3.	4.1	8
36	Properties of the Type B Histone Acetyltransferase Hat1. Journal of Biological Chemistry, 2007, 282, 836-842.	1.6	53

CHARLES HOFFMAN

#	Article	IF	CITATIONS
37	Cloning the Schizosaccharomyces pombe lys2 + gene and construction of new molecular genetic tools. Current Genetics, 2006, 49, 414-420.	0.8	9
38	Schizosaccharomyces pombe Git1 Is a C2-Domain Protein Required for Glucose Activation of Adenylate Cyclase. Genetics, 2006, 173, 49-61.	1.2	13
39	Reciprocal Nuclear Shuttling of Two Antagonizing Zn Finger Proteins Modulates Tup Family Corepressor Function To Repress Chromatin Remodeling. Eukaryotic Cell, 2006, 5, 1980-1989.	3.4	34
40	Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochemical Society Transactions, 2005, 33, 257-260.	1.6	105
41	Except in Every Detail: Comparing and Contrasting G-Protein Signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Eukaryotic Cell, 2005, 4, 495-503.	3.4	73
42	Schizosaccharomyces pombe Adenylate Cyclase Suppressor Mutations Suggest a Role for cAMP Phosphodiesterase Regulation in Feedback Control of Glucose/cAMP Signaling. Genetics, 2005, 171, 1523-1533.	1.2	33
43	Direct activation of fission yeast adenylate cyclase by the Gpa2 GÂ of the glucose signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6108-6113.	3.3	47
44	Suppressors of an Adenylate Cyclase Deletion in the Fission Yeast Schizosaccharomyces pombe. Eukaryotic Cell, 2004, 3, 610-619.	3.4	44
45	Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Research, 2004, 32, 855-862.	6.5	45
46	Strategies for gene disruptions and plasmid constructions in fission yeast. Methods, 2004, 33, 199-205.	1.9	20
47	The phospholipase B homolog Plb1 is a mediator of osmotic stress response and of nutrient-dependent repression of sexual differentiation in the fission yeast Schizosaccharomyces pombe. Molecular Genetics and Genomics, 2003, 269, 116-125.	1.0	25
48	Fission Yeast Tup1-Like Repressors Repress Chromatin Remodeling at the <i>fbp1</i> + Promoter and the <i>ade6-M26</i> Recombination Hotspot. Genetics, 2003, 165, 505-515.	1.2	43
49	Schizosaccharomyces pombe Cit7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation. Eukaryotic Cell, 2002, 1, 558-567.	3.4	35
50	Role of Fission Yeast Tup1-like Repressors and Prr1 Transcription Factor in Response to Salt Stress. Molecular Biology of the Cell, 2002, 13, 2977-2989.	0.9	43
51	Pseudostructural Inhibitors of G Protein Signaling during Development. Developmental Cell, 2002, 3, 154-155.	3.1	3
52	Gap Repair Transformation in Fission Yeast to Exchange Plasmid-Selectable Markers. BioTechniques, 2002, 33, 978-982.	0.8	11
53	The git5 Gβ and git11 Gγ Form an Atypical Gβγ Dimer Acting in the Fission Yeast Glucose/cAMP Pathway. Genetics, 2001, 157, 1159-1168.	1.2	59
54	Transcriptional Regulators of the <i>Schizosaccharomyces pombe fbp1</i> Gene Include Two Redundant Tup1p-like Corepressors and the CCAAT Binding Factor Activation Complex. Genetics, 2001, 157, 1205-1215.	1.2	62

CHARLES HOFFMAN

#	Article	IF	CITATIONS
55	Mutagenesis and Gene Cloning in Schizosaccharomyces pombe Using Nonhomologous Plasmid Integration and Rescue. BioTechniques, 2000, 28, 532-540.	0.8	10
56	Protein Kinase A and Mitogen-Activated Protein Kinase Pathways Antagonistically Regulate Fission Yeast fbp1 Transcription by Employing Different Modes of Action at Two Upstream Activation Sites. Molecular and Cellular Biology, 2000, 20, 6426-6434.	1.1	77
57	The Fission Yeast git5 Gene Encodes a Gβ Subunit Required for Glucose-Triggered Adenylate Cyclase Activation. Genetics, 2000, 154, 1463-1471.	1.2	50
58	Glucose Monitoring in Fission Yeast via the gpa2 Gα, the git5 Gβ and the git3 Putative Glucose Receptor. Genetics, 2000, 156, 513-521.	1.2	126
59	Protein Kinase A and Mitogen-Activated Protein Kinase Pathways Antagonistically Regulate Fission Yeast fbp1Transcription by Employing Different Modes of Action at Two Upstream Activation Sites. Molecular and Cellular Biology, 2000, 20, 6426-6434.	1.1	8
60	Preparation of Yeast DNA. Current Protocols in Molecular Biology, 1997, 39, Unit13.11.	2.9	50
61	The Schizosaccharomyces pombe pyp1 protein tyrosine phosphatase negatively regulates nutrient monitoring pathways. Journal of Cell Science, 1996, 109 (Pt 7), 1919-1925.	1.2	28
62	sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase Genetics, 1995, 140, 457-467.	1.2	83
63	Glucose repression of fbp1 transcription of Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8) Genetics, 1994, 138, 39-45.	1.2	65
64	Cloning and manipulation of the Schizosaccharomyces pombe his7 +gene as a new selectable marker for molecular genetic studies. Current Genetics, 1993, 24, 491-495.	0.8	75
65	Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe. Journal of Cell Science, 1993, 105 (Pt 4), 1095-100.	1.2	44
66	The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis Molecular and Cellular Biology, 1992, 12, 5571-5580.	1.1	53
67	The Fission Yeast Genes <i>pyp1⁺</i> and <i>pyp2⁺</i> Encode Protein Tyrosine Phosphatases That Negatively Regulate Mitosis. Molecular and Cellular Biology, 1992, 12, 5571-5580.	1.1	24
68	A fission-yeast gene encoding a protein with features of protein-tyrosine-phosphatases Proceedings of the United States of America, 1991, 88, 3455-3459.	3.3	49
69	Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway Genes and Development, 1991, 5, 561-571.	2.7	156
70	Isolation and characterization of mutants constitutive for expression of the fbp1 gene of Schizosaccharomyces pombe Genetics, 1990, 124, 807-816.	1.2	112
71	A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene, 1989, 84, 473-479.	1.0	87
72	A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene, 1987, 57, 267-272.	1.0	2,611

#	Article	IF	CITATIONS
73	Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5107-5111.	3.3	250