Wenchao Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation. Water Research, 2010, 44, 5999-6010.	5.3	214
2	Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: Effect of membrane properties and feed solution chemistry. Water Research, 2015, 69, 120-130.	5.3	133
3	Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	100
4	Reforming MSWM in Sukunan (Yogjakarta, Indonesia): A case-study of applying a zero-waste approach based on circular economy paradigm. Journal of Cleaner Production, 2021, 284, 124775.	4.6	65
5	Membrane fouling and long-term performance of seawater-driven forward osmosis for enrichment of nutrients in treated municipal wastewater. Journal of Membrane Science, 2016, 499, 555-562.	4.1	59
6	Resource recovery toward sustainability through nutrient removal from landfill leachate. Journal of Environmental Management, 2021, 287, 112265.	3.8	57
7	Chemical cleaning of nanofiltration membrane filtrating the effluent from a membrane bioreactor. Separation and Purification Technology, 2010, 75, 407-414.	3.9	32
8	Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	31
9	Electroconductive moving bed membrane bioreactor (EcMB-MBR) for single-step decentralized wastewater treatment: Performance, mechanisms, and cost. Water Research, 2021, 188, 116547.	5.3	27
10	Membrane cleaning and performance insight of osmotic microbial fuel cell. Chemosphere, 2021, 285, 131549.	4.2	23
11	Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	21
12	Removal of endocrine disrupting chemicals in a large scale membrane bioreactor plant combined with anaerobic-anoxic-oxic process for municipal wastewater reclamation. Water Science and Technology, 2011, 64, 1511-1518.	1.2	17
13	Binding TiO ₂ nanoparticles to forward osmosis membranes <i>via</i> MEMO–PMMA–Br monomer chains for enhanced filtration and antifouling performance. RSC Advances, 2018, 8, 19024-19033.	1.7	16
14	Sedimentary metals in developing tropical watersheds in relation to their urbanization intensities. Journal of Environmental Management, 2021, 278, 111521.	3.8	15
15	Removal of typical endocrine disrupting chemicals by membrane bioreactor: in comparison with sequencing batch reactor. Water Science and Technology, 2011, 64, 2096-2102.	1.2	13
16	Modeling prediction of the process performance of seawater-driven forward osmosis for nutrients enrichment: Implication for membrane module design and system operation. Journal of Membrane Science, 2016, 515, 7-21.	4.1	11
17	Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	11
18	Treatment of agro-food industrial waste streams using osmotic microbial fuel cells: Performance and potential improvement measures. Environmental Technology and Innovation, 2022, 27, 102773.	3.0	10

WENCHAO XUE

#	Article	IF	CITATIONS
19	Roles of membrane and organic fouling layers on the removal of endocrine disrupting chemicals in microfiltration. Journal of Environmental Sciences, 2018, 72, 176-184.	3.2	8
20	Spatial changes of nutrients and metallic contaminants in topsoil with multi-geostatistical approaches in a large-size watershed. Science of the Total Environment, 2022, 824, 153888.	3.9	7
21	Spatial and temporal variability of sedimentary nutrients in relation to regional development in the urbanizing lower Chao Phraya watersheds of Thailand. Journal of Soils and Sediments, 2020, 20, 4042-4054.	1.5	4
22	Partnership towards Synergistic Municipal Solid Waste Management Services in a Coastal Tourism Sub-Region. Sustainability, 2021, 13, 397.	1.6	4