Y Veera Manohara Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1772844/publications.pdf

Version: 2024-02-01

23 papers 840 citations

15 h-index 22 g-index

23 all docs

23 docs citations

23 times ranked 770 citing authors

#	Article	IF	Citations
1	Recent advances in analytical strategies and microsystems for food allergen detection. Food Chemistry, 2022, 371, 131120.	4.2	40
2	Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere, 2022, 287, 132281.	4.2	28
3	Self-assembled three-dimensional intertwined zinc cobaltite nanocubes for high-performance supercapacitors: A solvothermal route. Materials Science in Semiconductor Processing, 2022, 142, 106453.	1.9	9
4	Reduced graphene oxide (RGO)-supported Pd–CeO ₂ nanocomposites as highly active electrocatalysts for facile formic acid oxidation. New Journal of Chemistry, 2022, 46, 2478-2486.	1.4	8
5	Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Advances in Colloid and Interface Science, 2022, 304, 102664.	7.0	102
6	Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein. Biosensors and Bioelectronics, 2022, 214, 114511.	5. 3	55
7	Effect of Sulfamerazine on Structural Characteristics of Sodium Alginate Biopolymeric Films. Biotechnology and Bioprocess Engineering, 2022, 27, 596-606.	1.4	1
8	An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125533.	2.3	31
9	Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 7680-7690.	3.8	36
10	Graphene-based nanomaterials for the removal of pharmaceuticals in drinking water sources. , 2019, , 329-358.		12
11	A Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. Nanoscale, 2019, 11, 13300-13308.	2.8	31
12	Trace-level determination of amlodipine besylate by immobilization of palladium-silver bi-metallic nanoparticles on reduced graphene oxide as an electrochemical sensor. Journal of Electroanalytical Chemistry, 2019, 847, 113259.	1.9	16
13	Facile Preparation of Ionic Liquidâ€coated Copper Nanowireâ€modified Carbon Paste Electrode for Electrochemical Detection of Etilefrine Drug. Bulletin of the Korean Chemical Society, 2019, 40, 560-565.	1.0	5
14	An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New Journal of Chemistry, 2018, 42, 3137-3146.	1.4	74
15	Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO 2 @Fe 3 O 4 modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2018, 820, 168-175.	1.9	89
16	Facile one pot synthesis of bimetallic Pd-Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of anti-hypotensive drug. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 293-300.	2.3	26
17	Highly Sensitive Electrochemical Sensor for Anticancer Drug by a Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite. ACS Omega, 2018, 3, 14597-14605.	1.6	68
18	Ultrafine Ptâ€"Ni bimetallic nanoparticles anchored on reduced graphene oxide nanocomposites for boosting electrochemical detection of dopamine in biological samples. New Journal of Chemistry, 2018, 42, 16891-16901.	1.4	60

#	Article	IF	CITATIONS
19	Simple synthesis of biogenic Pd Ag bimetallic nanostructures for an ultra-sensitive electrochemical sensor for sensitive determination of uric acid. Journal of Electroanalytical Chemistry, 2018, 822, 163-170.	1.9	30
20	A simple, sensitive, and straightforward LC–MS approach for rapid analysis of three potential genotoxic impurities in rabeprazole formulations. Journal of Separation Science, 2018, 41, 3966-3973.	1.3	6
21	Recent progress on Fe-based nanoparticles: Synthesis, properties, characterization and environmental applications. Journal of Environmental Chemical Engineering, 2016, 4, 3537-3553.	3.3	59
22	Zirconia/Poly(oxalic acid) Modified Carbon Paste Electrode for Electrochemical Investigation of Uric Acid in Presence of Dopamine and Ascorbic Acid. Asian Journal of Chemistry, 2016, 28, 1828-1834.	0.1	1
23	Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode. Materials Science and Engineering C, 2015, 57, 378-386.	3.8	53