
Andrea Polle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant responses to abiotic stresses: heavy metalâ€induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 2002, 53, 1351-1365.	2.4	1,257
2	Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 2005, 32, 481.	1.1	933
3	Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 2002, 53, 1351-65.	2.4	730
4	Cadmium-Induced Changes in Antioxidative Systems, Hydrogen Peroxide Content, and Differentiation in Scots Pine Roots. Plant Physiology, 2001, 127, 887-898.	2.3	656
5	Dissecting the Superoxide Dismutase-Ascorbate-Glutathione-Pathway in Chloroplasts by Metabolic Modeling. Computer Simulations as a Step towards Flux Analysis. Plant Physiology, 2001, 126, 445-462.	2.3	368
6	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	3.3	353
7	Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure. Plant Cell, 2007, 19, 3669-3691.	3.1	352
8	Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 2006, 281, 15-24.	1.8	345
9	Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions. Plant Physiology, 2007, 143, 876-892.	2.3	338
10	Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 2016, 34, 1131-1148.	6.0	283
11	Environmental Factors Affect Acidobacterial Communities below the Subgroup Level in Grassland and Forest Soils. Applied and Environmental Microbiology, 2012, 78, 7398-7406.	1.4	272
12	Populus euphratica Displays Apoplastic Sodium Accumulation, Osmotic Adjustment by Decreases in Calcium and Soluble Carbohydrates, and Develops Leaf Succulence under Salt Stress. Plant Physiology, 2005, 139, 1762-1772.	2.3	261
13	Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 2005, 17, 103-112.	0.5	256
14	Transgenic, non-isoprene emitting poplars don't like it hot. Plant Journal, 2007, 51, 485-499.	2.8	229
15	Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts from Needles of Norway Spruce (<i>Picea abies</i> L., Karst.). Plant Physiology, 1990, 94, 312-319.	2.3	228
16	Overexpression of bacterial γâ€glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytologist, 2015, 205, 240-254.	3.5	214
17	Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 2015, 6, 6279.	5.8	211
18	Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biology, 2005, 6, R101.	13.9	208

#	Article	IF	CITATIONS
19	Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P. alba) overexpressing glutathione synthetase. Plant Journal, 1995, 7, 141-145.	2.8	203
20	Net cadmium flux and accumulation reveal tissueâ€specific oxidative stress and detoxification in <i>Populus × canescens</i> . Physiologia Plantarum, 2011, 143, 50-63.	2.6	194
21	A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in <i>Populus</i> × <i>canescens</i> Â. Plant Physiology, 2013, 162, 424-439.	2.3	187
22	Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiology and Biochemistry, 2002, 40, 577-584.	2.8	186
23	Upgrading Root Physiology for Stress Tolerance by Ectomycorrhizas: Insights from Metabolite and Transcriptional Profiling into Reprogramming for Stress Anticipation. Plant Physiology, 2009, 151, 1902-1917.	2.3	186
24	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	5.8	182
25	Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany, 2013, 64, 4207-4224.	2.4	180
26	Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia, 2010, 164, 1083-1094.	0.9	172
27	Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry, 2017, 136, 5-29.	1.7	171
28	Phosphorus in forest ecosystems: New insights from an ecosystem nutrition perspective. Journal of Plant Nutrition and Soil Science, 2016, 179, 129-135.	1.1	169
29	Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biology and Biochemistry, 2009, 41, 1622-1631.	4.2	167
30	Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza, 2011, 21, 297-308.	1.3	157
31	Cadmium tolerance in six poplar species. Environmental Science and Pollution Research, 2013, 20, 163-174.	2.7	157
32	Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nature Communications, 2020, 11, 1186.	5.8	156
33	Volatile profiles of fungi – Chemotyping of species and ecological functions. Fungal Genetics and Biology, 2013, 54, 25-33.	0.9	150
34	Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. Journal of Chemical Ecology, 2002, 28, 2483-2501.	0.9	149
35	FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology, 2010, 44, 225-242.	1.4	148
36	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	1.1	142

#	Article	IF	CITATIONS
37	Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biology, 2010, 10, 150.	1.6	141
38	Cadmium interferes with auxin physiology and lignification in poplar. Journal of Experimental Botany, 2012, 63, 1413-1421.	2.4	136
39	N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. Journal of Experimental Botany, 2012, 63, 6173-6185.	2.4	131
40	Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 2015, 35, 1283-1302.	1.4	131
41	Exogenous abscisic acid alleviates zinc uptake and accumulation in <scp><i>P</i></scp> <i>opulus</i> A— <i>canescens</i> exposed to excess zinc. Plant, Cell and Environment, 2015, 38, 207-223.	2.8	129
42	Girdling Affects Ectomycorrhizal Fungal (EMF) Diversity and Reveals Functional Differences in EMF Community Composition in a Beech Forest. Applied and Environmental Microbiology, 2010, 76, 1831-1841.	1.4	126
43	The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany, 2014, 108, 47-62.	2.0	125
44	What the transcriptome does not tell — proteomics and metabolomics are closer to the plants' patho-phenotype. Current Opinion in Plant Biology, 2015, 26, 26-31.	3.5	124
45	Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant <i>Populus</i> Species as a Strategy to Identify Genes Important for Stress Acclimation. Plant Physiology, 2010, 154, 1697-1709.	2.3	120
46	Ectomycorrhizas with <i><scp>P</scp>axillus involutus</i> enhance cadmium uptake and tolerance in <i><scp>P</scp>opulus</i> × <i>canescens</i> . Plant, Cell and Environment, 2014, 37, 627-642.	2.8	118
47	lonic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiology, 2008, 28, 947-957.	1.4	116
48	Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology, 2006, 12, 1094-1106.	4.2	115
49	Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genetics and Biology, 2005, 42, 829-835.	0.9	114
50	Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant, Cell and Environment, 2019, 42, 1087-1103.	2.8	113
51	FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods, 2011, 7, 9.	1.9	112
52	Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana. PLoS ONE, 2012, 7, e31435.	1.1	112
53	Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta, 2013, 237, 919-931.	1.6	112
54	Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Applied Microbiology and Biotechnology, 2016, 100, 8651-8665.	1.7	111

#	Article	IF	CITATIONS
55	<i>>Verticillium</i> Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2012, 24, 3823-3837.	3.1	110
56	Soluble phenylpropanoids are involved in the defense response of <scp>A</scp> rabidopsis against <i><scp>V</scp>erticillium longisporum</i> . New Phytologist, 2014, 202, 823-837.	3.5	110
57	On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant, Cell and Environment, 2015, 38, 1794-1816.	2.8	109
58	Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 2002, 40, 141-150.	2.8	108
59	Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporumgrowth but not disease symptoms. BMC Plant Biology, 2008, 8, 129.	1.6	107
60	Determinants of <i><scp>A</scp>cidobacteria</i> activity inferred from the relative abundances of 16 <scp>S rRNA</scp> transcripts in <scp>G</scp> erman grassland and forest soils. Environmental Microbiology, 2014, 16, 658-675.	1.8	103
61	Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. Tree Physiology, 2016, 36, 22-38.	1.4	103
62	Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus) Tj ETQq0 0 0 Experimental Botany, 2001, 52, 133-143.	rgBT /Overl 2.4	ock 10 Tf 50 101
63	Antioxidants and Manganese Deficiency in Needles of Norway Spruce (<i>Picea abies</i> L.) Trees. Plant Physiology, 1992, 99, 1084-1089.	2.3	100
64	Field studies on Norway spruce trees at high altitudes: II. Defence systems against oxidative stress in needles. New Phytologist, 1992, 121, 635-642.	3.5	100
65	Combined activity of <i>LACS1</i> and <i>LACS4</i> is required for proper pollen coat formation in Arabidopsis. Plant Journal, 2011, 68, 715-726.	2.8	98
66	Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the <i>Arabidopsis</i> hypocotyl. Development (Cambridge), 2014, 141, 4311-4319.	1.2	97
67	FTIR-ATR spectroscopic analyses of changes in wood properties during particle- and fibreboard production of hard- and softwood trees. BioResources, 2009, 4, 49-71.	0.5	96
68	Mehler Reaction: Friend or Foe in Photosynthesis?. Botanica Acta, 1996, 109, 84-89.	1.6	94
69	Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees - Structure and Function, 2007, 21, 581-591.	0.9	94
70	Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME Journal, 2014, 8, 321-330.	4.4	94
71	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	3.0	92
72	Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants. Journal of Experimental Botany, 2013, 64, 4225-4238.	2.4	91

#	Article	IF	CITATIONS
73	Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Global Change Biology, 2005, 11, 971-982.	4.2	89
74	Intensive tropical land use massively shifts soil fungal communities. Scientific Reports, 2019, 9, 3403.	1.6	86
75	Engineering Drought Resistance in Forest Trees. Frontiers in Plant Science, 2018, 9, 1875.	1.7	86
76	Salt stress induces the formation of a novel type of â€~pressure wood' in two <i>Populus</i> species. New Phytologist, 2012, 194, 129-141.	3.5	85
77	Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L Bulletin of Environmental Contamination and Toxicology, 2010, 85, 251-255.	1.3	84
78	The Nitrate Transporter (NRT) Gene Family in Poplar. PLoS ONE, 2013, 8, e72126.	1.1	84
79	Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports, 2016, 6, 31439.	1.6	84
80	The Influence of Apoplastic Ascorbate on the Activities of Cell Wall-Associated Peroxidase and NADH Oxidase in Needles of Norway Spruce (Picea abies L.). Plant and Cell Physiology, 1994, 35, 1231-1238.	1.5	79
81	Consequences of Air Pollution on Shoot-Root Interactions. Journal of Plant Physiology, 1996, 148, 296-301.	1.6	79
82	Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiology Ecology, 2002, 42, 359-366.	1.3	78
83	Molecular characterization of PeNhaD1: the first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Molecular Biology, 2005, 58, 75-88.	2.0	77
84	Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquatic Botany, 2008, 88, 303-310.	0.8	76
85	Mycorrhiza-Triggered Transcriptomic and Metabolomic Networks Impinge on Herbivore Fitness. Plant Physiology, 2018, 176, 2639-2656.	2.3	75
86	Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations—Ecological and Economic Valuations. Frontiers in Forests and Global Change, 2019, 2, .	1.0	75
87	Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell and Environment, 2009, 32, 992-1003.	2.8	73
88	Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and reâ€watering. Physiologia Plantarum, 2014, 151, 480-494.	2.6	72
89	Salt tolerance in Populus: Significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environmental and Experimental Botany, 2014, 107, 113-124.	2.0	72
90	Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Scientific Reports, 2017, 7, 43215.	1.6	72

#	Article	IF	CITATIONS
91	RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis. Plant Molecular Biology, 2010, 74, 61-75.	2.0	71
92	<i>Paxillus involutus</i> Strains MAJ and NAU Mediate K+/Na+ Homeostasis in Ectomycorrhizal <i>Populus</i> × <i>canescens</i> under Sodium Chloride Stress Â. Plant Physiology, 2012, 159, 1771-1786.	2.3	69
93	Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees - Structure and Function, 2005, 19, 109-118.	0.9	68
94	Salt stress affects xylem differentiation of grey poplar (PopulusÂ×Âcanescens). Planta, 2009, 229, 299-309.	1.6	68
95	Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under Free Air CO2 Enrichment (FACE) and nitrogen fertilisation. Plant and Soil, 2008, 304, 45-57.	1.8	66
96	Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO ₂ atmosphere. Global Change Biology, 2009, 15, 38-47.	4.2	66
97	Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. New Phytologist, 2018, 220, 1200-1210.	3.5	66
98	The slow rise of the flash-light-induced alkalization by Photosystem II of the suspending medium of thylakoids is reversibly related to thylakoid stacking. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 848, 257-264.	0.5	64
99	Interspecific temporal and spatial differences in the acquisition of litterâ€derived nitrogen by ectomycorrhizal fungal assemblages. New Phytologist, 2013, 199, 520-528.	3.5	63
100	Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biology and Biochemistry, 2016, 98, 127-137.	4.2	62
101	The Vascular Pathogen <i>Verticillium longisporum</i> Requires a Jasmonic Acid-Independent COI1 Function in Roots to Elicit Disease Symptoms in Arabidopsis Shoots Â. Plant Physiology, 2012, 159, 1192-1203.	2.3	61
102	Osmotic Stress and Ion-Specific Effects on Xylem Abscisic Acid and the Relevance to Salinity Tolerance in Poplar. Journal of Plant Growth Regulation, 2002, 21, 224-233.	2.8	60
103	Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental and Experimental Botany, 2010, 69, 189-197.	2.0	59
104	Differential Effects of Elevated Ozone on Two Hybrid Aspen Genotypes Predisposed to Chronic Ozone Fumigation. Role of Ethylene and Salicylic Acid. Plant Physiology, 2003, 132, 196-205.	2.3	58
105	Heavy metal signalling in plants: linking cellular and organismic responses. Topics in Current Genetics, 0, , 187-215.	0.7	57
106	Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis. Frontiers in Plant Science, 2018, 9, 463.	1.7	56
107	The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environmental and Experimental Botany, 2011, 72, 304-311.	2.0	55
108	Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) differentially affect soil microorganisms and carbon dynamics. Soil Biology and Biochemistry, 2013, 61, 23-32.	4.2	55

#	Article	IF	CITATIONS
109	Freezing tolerance in two Norway spruce (Picea abies [L.] Karst.) progenies is physiologically correlated with drought tolerance. Journal of Plant Physiology, 2005, 162, 549-558.	1.6	54
110	Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biology and Biochemistry, 2018, 117, 191-202.	4.2	54
111	Field studies on Norway spruce trees at high altitudes. I. Mineral, pigment and soluble protein contents of needles as affected by climate and pollution. New Phytologist, 1992, 121, 89-99.	3.5	53
112	Theory of proton flow along appressed thylakoid membranes under both non-stationary and stationary conditions. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 848, 265-273.	0.5	52
113	Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress. Annals of Forest Science, 2009, 66, 106-106.	0.8	52
114	FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (<i>Fagus sylvatica</i> L.) trees grown at different sites. Holzforschung, 2008, 62, 530-538.	0.9	51
115	Dynamics of phosphorus nutrition, allocation and growth of young beech (Fagus sylvatica L.) trees in P-rich and P-poor forest soil. Tree Physiology, 2018, 38, 37-51.	1.4	51
116	Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiology, 2007, 27, 1153-1163.	1.4	50
117	Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Functional Plant Biology, 2007, 34, 31.	1.1	50
118	Isoprene emissionâ€free poplars – a chance to reduce the impact from poplar plantations on the atmosphere. New Phytologist, 2012, 194, 70-82.	3.5	50
119	Quantitative trait loci affecting stomatal density and growth in a <i>Quercus robur</i> progeny: implications for the adaptation to changing environments. Global Change Biology, 2008, 14, 1934-1946.	4.2	48
120	Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiologiae Plantarum, 2013, 35, 2951-2964.	1.0	48
121	Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biology and Biochemistry, 2013, 62, 76-81.	4.2	48
122	Changes in Trophic Groups of Protists With Conversion of Rainforest Into Rubber and Oil Palm Plantations. Frontiers in Microbiology, 2019, 10, 240.	1.5	48
123	Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest. Tree Physiology, 2011, 31, 531-538.	1.4	47
124	Nitrogen fertilization has differential effects on N allocation and lignin in two Populus species with contrasting ecology. Trees - Structure and Function, 2012, 26, 1933-1942.	0.9	46
125	Growing poplars for research with and without mycorrhizas. Frontiers in Plant Science, 2013, 4, 332.	1.7	46
126	Assembly processes of trophic guilds in the root mycobiome of temperate forests. Molecular Ecology, 2019, 28, 348-364.	2.0	46

#	Article	IF	CITATIONS
127	Interactive Effects of Elevated CO2, Ozone and Drought Stress on the Activities of Antioxidative Enzymes in Needles of Norway Spruce Trees (Picea abies, [L] Karsten) Grown with Luxurious N-Supply. Journal of Plant Physiology, 1996, 148, 351-355.	1.6	45
128	Superoxide Dismutase Activity in Needles of Norwegian Spruce Trees (<i>Picea abies</i> L.). Plant Physiology, 1989, 90, 1310-1315.	2.3	44
129	GH3::GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiology, 2008, 28, 1305-1315.	1.4	44
130	Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. Journal of Plant Physiology, 2014, 171, 250-259.	1.6	44
131	Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC Plant Biology, 2016, 16, 206.	1.6	44
132	Seasonal Fluctuations of Ascorbate-Related Enzymes: Acute and Delayed Effects of Late Frost in Spring on Antioxidative Systems in Needles of Norway Spruce (Picea abies L.). Plant and Cell Physiology, 1996, 37, 717-725.	1.5	43
133	Diurnal fluctuations of antioxidative systems in leaves of field-grown beech trees (Fagus sylvatica): Responses to light and temperature. Physiologia Plantarum, 2001, 111, 158-164.	2.6	43
134	Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. Frontiers in Plant Science, 2020, 11, 590063.	1.7	43
135	Climate Change Impairs Nitrogen Cycling in European Beech Forests. PLoS ONE, 2016, 11, e0158823.	1.1	42
136	Phenology, photosynthesis, and phosphorus in European beech (<i>Fagus sylvatica</i> L) in two forest soils with contrasting P contents. Journal of Plant Nutrition and Soil Science, 2016, 179, 151-158.	1.1	42
137	Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 (EUROFACE) and N fertilization. Global Change Biology, 2006, 12, 272-283.	4.2	41
138	Harnessing salt for woody biomass production. Tree Physiology, 2012, 32, 1-3.	1.4	41
139	Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation. BMC Plant Biology, 2014, 14, 391.	1.6	41
140	Dissecting nutrient-related co-expression networks in phosphate starved poplars. PLoS ONE, 2017, 12, e0171958.	1.1	41
141	Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and) Tj ETQq1 1	0.784314 4.2	4 rgBT /Overlo
142	Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses. Tree Physiology, 2014, 34, 1348-1361.	1.4	40
143	Ectomycorrhizal Colonization and Diversity in Relation to Tree Biomass and Nutrition in a Plantation of Transgenic Poplars with Modified Lignin Biosynthesis. PLoS ONE, 2013, 8, e59207.	1.1	40
144	Uptake and translocation of manganese in seedlings of two varieties of Douglas fir (Pseudotsuga) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50

#	Article	IF	CITATIONS
145	Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus. Frontiers in Plant Science, 2015, 6, 634.	1.7	39
146	Volatile organic compound patterns predict fungal trophic mode and lifestyle. Communications Biology, 2021, 4, 673.	2.0	39
147	Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates. BMC Ecology, 2019, 19, 10.	3.0	38
148	Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. New Phytologist, 2019, 222, 1951-1964.	3.5	38
149	Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce [Picea abies (L.) Karst.] grown with different ratios of nitrate and ammonium as nitrogen sources. New Phytologist, 1994, 128, 621-628.	3.5	37
150	Poplar nutrition under drought as affected by ectomycorrhizal colonization. Environmental and Experimental Botany, 2014, 108, 89-98.	2.0	37
151	Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. Mycorrhiza, 2017, 27, 233-245.	1.3	37
152	Protection from oxidative stress in transgenic plants. Biochemical Society Transactions, 1994, 22, 936-940.	1.6	36
153	Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environmental and Experimental Botany, 2013, 87, 207-217.	2.0	36
154	Biomass traits and candidate genes for bioenergy revealed through association genetics in coppiced European Populus nigra (L.). Biotechnology for Biofuels, 2016, 9, 195.	6.2	36
155	Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations. PLoS ONE, 2015, 10, e0138077.	1.1	36
156	Early drought-induced changes to the needle proteome of Norway spruce. Tree Physiology, 2007, 27, 1423-1431.	1.4	35
157	Genes and gene clusters related to genotype and drought-induced variation in saccharification potential, lignin content and wood anatomical traits in Populus nigraâ€. Tree Physiology, 2018, 38, 320-339.	1.4	35
158	Poplar Wood Rays Are Involved in Seasonal Remodeling of Tree Physiology Â. Plant Physiology, 2012, 160, 1515-1529.	2.3	34
159	Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress. Frontiers in Plant Science, 2015, 6, 330.	1.7	34
160	Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees. Plant, Cell and Environment, 2016, 39, 2691-2700.	2.8	34
161	Relations between sulphur supply and glutathione and ascorbate concentrations inBrassica napus. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1995, 158, 67-69.	0.4	32
162	Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza, 2014, 24, 645-650.	1.3	32

#	Article	IF	CITATIONS
163	High rates of virus-induced gene silencing by tobacco rattle virus in <i>Populus</i> . Tree Physiology, 2015, 35, 1016-1029.	1.4	32
164	Abscisic acid signalling mediates biomass tradeâ€off and allocation in poplar. New Phytologist, 2019, 223, 1192-1203.	3.5	32
165	Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1â€dependent manner. New Phytologist, 2020, 228, 728-740.	3.5	32
166	Seasonal Changes of the Antioxidative Systems in Foliar Buds and Leaves of Fieldâ€grown Beech Trees (<i>Fagus sylvatica</i> , L.) in a Stressful Climate. Botanica Acta, 1995, 108, 314-320.	1.6	30
167	Fatty acid metabolism in the ectomycorrhizal fungus <i>Laccaria bicolor</i> . New Phytologist, 2009, 182, 950-964.	3.5	30
168	Spatial Patterns of Ectomycorrhizal Assemblages in a Monospecific Forest in Relation to Host Tree Genotype. Frontiers in Plant Science, 2013, 4, 103.	1.7	30
169	Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought. Physiologia Plantarum, 2016, 157, 38-53.	2.6	29
170	The Effect of Elevated [CO2] on Uptake and Allocation of13C and15N in Beech (Fagus sylvatica L.) during Leafing. Plant Biology, 2000, 2, 113-120.	1.8	28
171	The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var.) Tj ETQq1 1 C).78 43 :14 rg	gBT \$D verlock
172	Competing Endogenous RNA Networks Underlying Anatomical and Physiological Characteristics of Poplar Wood in Acclimation to Low Nitrogen Availability. Plant and Cell Physiology, 2019, 60, 2478-2495.	1.5	26
173	Mycorrhizal Phosphorus Efficiencies and Microbial Competition Drive Root P Uptake. Frontiers in Forests and Global Change, 2020, 3, .	1.0	25
174	Subcellular Nutrient Element Localization and Enrichment in Ecto- and Arbuscular Mycorrhizas of Field-Grown Beech and Ash Trees Indicate Functional Differences. PLoS ONE, 2014, 9, e114672.	1.1	25
175	Amelioration of planting stress by soil amendment with a hydrogel–mycorrhiza mixture for early establishment of beech (Fagus sylvatica L.) seedlings. Annals of Forest Science, 2011, 68, 803-810.	0.8	24
176	Minor contribution of leaf litter to N nutrition of beech (Fagus sylvatica) seedlings in a mountainous beech forest of Southern Germany. Plant and Soil, 2013, 369, 657-668.	1.8	24
177	Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus) Tj ETQq1	1 0.784314 2.0	rgBT /Overic
178	Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in different forest soils. Soil Biology and Biochemistry, 2009, 41, 742-753.	4.2	23
179	Are beech (Fagus sylvatica) roots territorial?. Forest Ecology and Management, 2010, 260, 1212-1217.	1.4	23
180	Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment. Applied and Environmental Microbiology, 2015, 81, 5957-5967.	1.4	23

#	Article	IF	CITATIONS
181	Mistletoe infestation mediates alteration of the phytohormone profile and anti-oxidative metabolism in bark and wood of its host Pinus sylvestris. Tree Physiology, 2017, 37, 676-691.	1.4	23

Growth and protection against oxidative stress in young clones and mature spruce trees (Picea abies) Tj ETQq0 0 0 rgBT /Overlock 10 Tr

183	Carbon and nitrogen balance in beech roots under competitive pressure of soil-borne microorganisms induced by girdling, drought and glucose application. Functional Plant Biology, 2010, 37, 879.	1.1	22
184	Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Frontiers in Plant Science, 2014, 5, 229.	1.7	22
185	Shifts in root and soil chemistry drive the assembly of belowground fungal communities in tropical land-use systems. Soil Biology and Biochemistry, 2021, 154, 108140.	4.2	22
186	SchÃ d igung von Waldökosystemen. , 2007, , .		22
187	Superoxide dismutase activity in needles of Scots pine and Norway spruce under field and chamber conditions: lack of ozone effects. New Phytologist, 1991, 117, 335-343.	3.5	21
188	Purification of Two Superoxide Dismutase Isozymes and Their Subcellular Localization in Needles and Roots of Norway Spruce (<i>Picea abies</i> L.) Trees. Plant Physiology, 1992, 100, 334-340.	2.3	21
189	Sulphate and antioxidants in needles of Scots pine (Pinus sylvestris L.) from three SO 2 â€polluted field sites in eastern Germany. New Phytologist, 1994, 127, 571-577.	3.5	21
190	Preferential use of root litter compared to leaf litter by beech seedlings and soil microorganisms. Plant and Soil, 2013, 368, 519-534.	1.8	21
191	Acid and calcareous soils affect nitrogen nutrition and organic nitrogen uptake by beech seedlings (Fagus sylvatica L.) under drought, and their ectomycorrhizal community structure. Plant and Soil, 2016, 409, 143-157.	1.8	21
192	Soil and root nutrient chemistry structure rootâ€associated fungal assemblages in temperate forests. Environmental Microbiology, 2020, 22, 3081-3095.	1.8	21
193	Root isoprene formation alters lateral root development. Plant, Cell and Environment, 2020, 43, 2207-2223.	2.8	21
194	Ion fluxes in Paxillus involutus-inoculated roots of Populus×canescens under saline stress. Environmental and Experimental Botany, 2014, 108, 99-108.	2.0	20
195	Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC Plant Biology, 2015, 15, 165.	1.6	20
196	The slow rate of proton consumption at the reducing side of Photosystem I is limited by the rate of redox reactions of extrinsic electron acceptors, but not by a diffusion barrier for protons. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 848, 274-278.	0.5	19
197	Does Atmospheric Hydrogen Peroxide Contribute to Damage to Forest Trees?. Environmental Science & Technology, 1994, 28, 812-815.	4.6	19
198	Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions. Microbial Ecology, 2015, 69, 867-878.	1.4	19

#	Article	IF	CITATIONS
199	Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees. New Phytologist, 2021, 229, 2611-2624.	3.5	19
200	Towards Genetic Engineering for Drought Tolerance in Trees. , 2006, , 275-297.		18
201	Impacts of earthworms on nitrogen acquisition from leaf litter by arbuscular mycorrhizal ash and ectomycorrhizal beech trees. Environmental and Experimental Botany, 2015, 120, 1-7.	2.0	18
202	Intraspecific variations in drought response and fitness traits of beech (Fagus sylvatica L.) seedlings from three provenances differing in annual precipitation. Trees - Structure and Function, 2017, 31, 1215-1225.	0.9	18
203	Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration. Tree Physiology, 2010, 30, 1161-1173.	1.4	17
204	What Makes the Wood? Exploring the Molecular Mechanisms of Xylem Acclimation in Hardwoods to an Ever-Changing Environment. Forests, 2019, 10, 358.	0.9	17
205	Wood Formation under Severe Drought Invokes Adjustment of the Hormonal and Transcriptional Landscape in Poplar. International Journal of Molecular Sciences, 2021, 22, 9899.	1.8	17
206	Populus Responses to Abiotic Stress. , 2010, , 225-246.		17
207	Developmental changes of antioxidative systems in tobacco leaves as affected by limited sucrose export in transgenic plants expressing yeast-invertase in the apoplastic space. Planta, 1996, 198, 253.	1.6	16
208	Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula × P.) Tj ETQq Function, 2002, 16, 262-273.	0 0 0 rgB 0.9	/Overlock 10 16
209	Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress. Frontiers in Plant Science, 2016, 7, 1975.	1.7	16
210	Drought effects on the tissue- and cell-specific cytokinin activity in poplar. AoB PLANTS, 2018, 10, plx067.	1.2	16
211	Comparative characterization of ethanol organosolv lignin polymer from bamboo green, timber and yellow. Wood Science and Technology, 2018, 52, 1331-1341.	1.4	16
212	National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 2021, 8, .	1.3	16
213	Role of Carbon Dioxide in Modifying the Plant Response to Ozone. , 1999, , 193-213.		16
214	Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests. PLoS ONE, 2017, 12, e0189502.	1.1	16
215	Protection from Oxidative Stress in Trees as Affected by Elevated CO2 and Environmental Stress. , 1996, , 299-315.		15
216	Tree species composition and soil properties in pure and mixed beech-conifer stands drive soil fungal communities. Forest Ecology and Management, 2021, 502, 119709.	1.4	15

#	Article	IF	CITATIONS
217	Evidence for the Participation of a 5-Oxo-prolinase in Degradation of Glutathione in Nicotiana tabacum. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1980, 35, 708-711.	0.6	14
218	Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations. Physiologia Plantarum, 2004, 121, 75-83.	2.6	14
219	Crossâ€scale integration of mycorrhizal function. New Phytologist, 2018, 220, 941-946.	3.5	14
220	Phosphorus Compartmentalization on the Cellular Level of Douglas Fir Root as Affected by Mn Toxicity: A Synchrotron-Based FTIR Approach. Spectroscopy, 2012, 27, 265-272.	0.8	13
221	Transient and intramembrane trapping of pumped protons in thylakoids. FEBS Letters, 1986, 198, 263-267.	1.3	12
222	Quantitative Xâ€ r ay microanalysis of hydrogen peroxide within plant cells. Microscopy Research and Technique, 2009, 72, 49-60.	1.2	12
223	Mycorrhiza-Tree-Herbivore Interactions: Alterations in Poplar Metabolome and Volatilome. Metabolites, 2022, 12, 93.	1.3	12
224	Relating genetic variation of ecologically important tree traits to associated organisms in full-sib aspen families. European Journal of Forest Research, 2011, 130, 707-716.	1.1	11
225	Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter. Frontiers in Plant Science, 2016, 7, 652.	1.7	11
226	Beech trees fuel soil animal food webs via root-derived nitrogen. Basic and Applied Ecology, 2017, 22, 28-35.	1.2	11
227	Saprotrophic and Ectomycorrhizal Fungi Contribute Differentially to Organic P Mobilization in Beech-Dominated Forest Ecosystems. Frontiers in Forests and Global Change, 2020, 3, .	1.0	11
228	The influence of transpiration on foliar accumulation of salt and nutrients under salinity in poplar (Populus × canescens). PLoS ONE, 2021, 16, e0253228.	1.1	11
229	Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. MSystems, 2022, 7, e0095721.	1.7	11
230	Multiâ€omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. Plant Journal, 2022, 111, 282-303.	2.8	11
231	Quantitative X-ray Elemental Imaging in Plant Materials at the Subcellular Level with a Transmission Electron Microscope: Applications and Limitations. Materials, 2014, 7, 3160-3175.	1.3	10
232	Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency. Journal of Proteomics, 2017, 169, 33-40.	1.2	10
233	Carbohydrate Accumulation Affects the Redox State of Ascorbate in Detached Tobacco Leaves. Botanica Acta, 1995, 108, 432-438.	1.6	9
234	Genetic diversity in aspen and its relation to arthropod abundance. Frontiers in Plant Science, 2015, 5, 806.	1.7	9

#	Article	IF	CITATIONS
235	Leaf litter species identity influences biochemical composition of ectomycorrhizal fungi. Mycorrhiza, 2019, 29, 85-96.	1.3	9
236	Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in Oil Palm-Enrichment Plantations. Microorganisms, 2020, 8, 1577.	1.6	9
237	An interdisciplinary framework to describe and evaluate the functioning of forest ecosystems. Basic and Applied Ecology, 2021, 52, 1-14.	1.2	9
238	Hydrogen Sulfide Emission by Cultured Tobacco Cells. Zeitschrift Für Pflanzenphysiologie, 1983, 111, 189-202.	1.4	8
239	Interference of Heavy Metal Toxicity with Auxin Physiology. , 2012, , 249-259.		8
240	Mortality of Different Populus Genotypes in Recently Established Mixed Short Rotation Coppice with Robinia pseudoacacia L Forests, 2019, 10, 410.	0.9	8
241	Differences in Root Nitrogen Uptake Between Tropical Lowland Rainforests and Oil Palm Plantations. Frontiers in Plant Science, 2020, 11, 92.	1.7	8
242	Peroxidase Activity in Poplar Inoculated with Compatible and Incompetent Isolates of Paxillus involutus. HAYATI Journal of Biosciences, 2007, 14, 49-53.	0.1	7
243	Phylogeny, tissue-specific expression, and activities of root-secreted purple acid phosphatases for P uptake from ATP in P starved poplar. Plant Science, 2021, 307, 110906.	1.7	7
244	Effects of Photooxidants on Plants. , 1989, , 251-258.		7
245	Photooxidative Stress in Trees. , 2019, , 199-218.		7
246	Diurnal fluctuations of secondary photooxidants in air and of detoxification systems in the foliage of Mediterranean forest trees. Atmospheric Environment, 1997, 31, 61-65.	1.9	6
247	Preliminary Studies of Ascorbate Metabolism in Green and Albino Regions of Variegated Leaves ofColeus blumei, Benth. Free Radical Research, 1999, 31, 181-185.	1.5	6
248	Physiological Responses to Abiotic and Biotic Stress in Forest Trees. Forests, 2019, 10, 711.	0.9	6
249	Effective Defense of Aleppo Pine Against the Giant Scale Marchalina hellenica Through Ecophysiological and Metabolic Changes. Frontiers in Plant Science, 2020, 11, 581693.	1.7	6
250	Soil Layers Matter: Vertical Stratification of Root-Associated Fungal Assemblages in Temperate Forests Reveals Differences in Habitat Colonization. Microorganisms, 2021, 9, 2131.	1.6	6
251	Impact of ectomycorrhizal community composition and soil treatment on inorganic nitrogen nutrition and performance of beech (Fagus sylvatica L.) provenances. Trees - Structure and Function, 2017, 31, 1891-1904.	0.9	5
252	Early Stage Root-Associated Fungi Show a High Temporal Turnover, but Are Independent of Beech Progeny. Microorganisms, 2020, 8, 210.	1.6	5

#	Article	IF	CITATIONS
253	Phosphorus Availability Alters the Effect of Tree Girdling on the Diversity of Phosphorus Solubilizing Soil Bacterial Communities in Temperate Beech Forests. Frontiers in Forests and Global Change, 2021, 4, .	1.0	5
254	5-Oxo-prolinase activity in tobacco suspension cultures: Regulation by sulfate nutrition. Physiologia Plantarum, 1983, 59, 61-66.	2.6	4
255	A novel method to quantify H+-ATPase-dependent Na+ transport across plasma membrane vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2078-2088.	1.4	4
256	Ectomycorrhizal Fungal Strains Facilitate Cd2+ Enrichment in a Woody Hyperaccumulator under Co-Existing Stress of Cadmium and Salt. International Journal of Molecular Sciences, 2021, 22, 11651.	1.8	4
257	Early Effects of Fertilizer and Herbicide Reduction on Root-Associated Biota in Oil Palm Plantations. Agronomy, 2022, 12, 199.	1.3	4
258	Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus) Tj ETQq0 0 0 rg Experimental Botany, 2001, 52, 133-143.	BT /Overlo 2.4	ock 10 Tf 50 3
259	Editorial: Ecological Consequences of Biodiversity and Biotechnology in Agriculture and Forestry. Frontiers in Plant Science, 2016, 7, 210.	1.7	3
260	Hybrid and Environmental Effects on Gene Expression in Poplar Clones in Pure and Mixed with Black Locust Stands. Forests, 2020, 11, 1075.	0.9	3
261	Wood properties and transcriptional responses of poplar hybrids in mixed cropping with the nitrogen-fixing species Robinia pseudoacacia. Tree Physiology, 2021, 41, 865-881.	1.4	3
262	Interaction between growth environment and host progeny shape fungal endophytic assemblages in transplanted Fagus sylvatica. Fungal Ecology, 2022, 60, 101175.	0.7	2
263	A tribute to Sally E. Smith. New Phytologist, 2020, 228, 397-402.	3.5	1
264	Drought Deteriorates the N Stoichiometry of Biomass Production in European Beech Saplings Under Global Change. Frontiers in Forests and Global Change, 2021, 4, .	1.0	1
265	Diffusion Barriers for Protons at the External Surface of Thylakoids. , 1984, , 261-264.		1
266	Response of Poplar Leaf Transcriptome to Changed Management and Environmental Conditions in Pure and Mixed with Black Locust Stands. Forests, 2022, 13, 147.	0.9	1
267	Resistance against oxidative stress in leaves of young beech trees grown in model ecosystems with different soil qualities, elevated CO2, and lachnid infestation. European Journal of Forest Research, 2001, 120, 1-7.	0.3	0
268	Changes in culm surface temperature with maturity of the bamboo species Guadua angustifolia. Journal of Forestry Research, 2016, 27, 419-425.	1.7	0
269	Genotypic and tissue-specific variation of Populus nigra transcriptome profiles in response to drought. Scientific Data, 2022, 9, .	2.4	0