Yun Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771677/publications.pdf

Version: 2024-02-01

840776 794594 35 455 11 19 citations h-index g-index papers 37 37 37 239 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Disaster Risk Science: A Geographical Perspective and a Research Framework. International Journal of Disaster Risk Science, 2020, 11, 426-440.	2.9	58
2	Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure. Applied Thermal Engineering, 2016, 93, 1295-1303.	6.0	47
3	Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing. Applied Thermal Engineering, 2020, 174, 115340.	6.0	45
4	Synthesis and Modification of Znâ€doped TiO ₂ Nanoparticles for the Photocatalytic Degradation of Tetracycline. Photochemistry and Photobiology, 2016, 92, 651-657.	2.5	37
5	Modeling steam heat transfer in thermal protective clothing under hot steam exposure. International Journal of Heat and Mass Transfer, 2018, 120, 818-829.	4.8	24
6	Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation. Measurement Science and Technology, 2016, 27, 125904.	2.6	20
7	The effect of moisture content within multilayer protective clothing on protection from radiation and steam. International Journal of Occupational Safety and Ergonomics, 2018, 24, 190-199.	1.9	18
8	An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation. Textile Reseach Journal, 2017, 87, 1953-1967.	2.2	17
9	Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation. Fibers and Polymers, 2017, 18, 582-589.	2.1	16
10	A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure. Journal of Industrial Textiles, 2018, 47, 2128-2152.	2.4	14
11	Developing a test device to analyze heat transfer through firefighter protective clothing. International Journal of Thermal Sciences, 2019, 138, 1-11.	4.9	14
12	A Coupled Model for Heat and Moisture Transport Simulation in Porous Materials Exposed to Thermal Radiation. Transport in Porous Media, 2020, 131, 381-397.	2.6	14
13	Thermal protective performance of firefighting protective clothing incorporated with phase change material in fire environments. Fire and Materials, 2021, 45, 250-260.	2.0	13
14	Effect of compression on thermal protection of firefighting protective clothing under flame exposure. Fire and Materials, 2019, 43, 802-810.	2.0	11
15	Evaluation method for thermal protection of firefighters' clothing in high-temperature and high-humidity condition. International Journal of Clothing Science and Technology, 2016, 28, 429-448.	1.1	10
16	A new approach to predict heat stress and skin burn of firefighter under low-level thermal radiation. International Journal of Thermal Sciences, 2019, 145, 106021.	4.9	9
17	Influence of Transport Properties of Laminated Membrane-fabric on Thermal Protective Performance Against Steam Hazard. Fibers and Polymers, 2019, 20, 2433-2442.	2.1	9
18	Numerical simulation of heat transfer in protective clothing with various heat exposure distances. Journal of the Textile Institute, 2017, 108, 1412-1420.	1.9	8

#	Article	lF	Citations
19	Experimental study of moisture role and heat transfer in thermal insulation fabric against hot surface contact. International Journal of Thermal Sciences, 2020, 156, 106501.	4.9	8
20	Numerical study on effect of thermal regulation performance of winter uniform on thermal responses of high school student. Building and Environment, 2018, 140, 43-54.	6.9	7
21	Transmission pathways of China's historical climate change impacts based on a food security framework. Holocene, 2018, 28, 1564-1573.	1.7	7
22	Numerical study of heat and moisture transfer in thermal protective clothing against a coupled thermal hazardous environment. International Journal of Heat and Mass Transfer, 2022, 194, 122989.	4.8	7
23	Development of heat and moisture transfer model for predicting skin burn of firefighter in fire environments. Journal of the Textile Institute, 2022, 113, 1658-1665.	1.9	6
24	Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure. Journal of Industrial Textiles, 2018, 47, 853-869.	2.4	5
25	Investigating the Thermal-Protective Performance of Fire-Retardant Fabrics Considering Garment Aperture Structures Exposed to Flames. Materials, 2020, 13, 3579.	2.9	5
26	To what extent did changes in temperature affect China's socioeconomic development from the Western Han Dynasty to the Five Dynasties period?. Journal of Quaternary Science, 2020, 35, 433-443.	2.1	5
27	Numerical simulation of heat transfer in electrically heated footwear in a severely cold environment. Building and Environment, 2022, 207, 108429.	6.9	4
28	Experimental study of heat and moisture transfer in vertical air gap under protective clothing against dry and wet heat exposures. International Journal of Clothing Science and Technology, 2021, 33, 873-888.	1.1	3
29	Quantitative analysis of moisture distribution and transfer in firefighter protective clothing exposed to low-intensity radiation with/without hot steam. International Journal of Occupational Safety and Ergonomics, 2022, 28, 1533-1542.	1.9	3
30	A test device to characterize cold-contact protective performance of fabrics. Journal of Industrial Textiles, 2022, 51, 675S-693S.	2.4	3
31	Development of a numerical model to predict physiological strain of firefighter in fire hazard. Scientific Reports, 2018, 8, 3628.	3.3	2
32	Effect of Compression on Contact Heat Transfer in Thermal Protective Clothing Under Different Moisture Contents. Clothing and Textiles Research Journal, 2020, 38, 19-31.	3.4	2
33	Mapping the research status and dynamic frontiers of functional clothing: a review via bibliometric and knowledge visualization. International Journal of Clothing Science and Technology, 2022, ahead-of-print, .	1.1	2
34	Effect of Fabric Deformation on Thermal Protective Performance of Clothing in a Cylindrical Configuration., 2019,, 271-285.		0
35	Thermal degradation behavior of flame-resistant fabrics exposed to fires: effect of air gap type and thickness. Textile Reseach Journal, 0, , 004051752211042.	2.2	0