
Phillip Servio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771499/publications.pdf Version: 2024-02-01

DHILLID SEDVIO

#	Article	IF	CITATIONS
1	Piezoâ€elasticity and stability limits of monocrystal methane gas hydrates: Atomisticâ€continuum characterization. Canadian Journal of Chemical Engineering, 2023, 101, 639-650.	1.7	7
2	Dynamic viscosity of methane and carbon dioxide hydrate systems from pure water at high-pressure driving forces. Chemical Engineering Science, 2022, 252, 117282.	3.8	20
3	Thermal fluctuation spectrum of flexoelectric viscoelastic semiflexible filaments and polymers: A line liquid crystal model. Canadian Journal of Chemical Engineering, 2022, 100, 3162-3173.	1.7	3
4	Wrinkling pattern formation with periodic nematic orientation: From egg cartons to corrugated surfaces. Physical Review E, 2022, 105, 034702.	2.1	4
5	TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets. Journal of Colloid and Interface Science, 2022, 619, 84-95.	9.4	4
6	Complex Nanowrinkling in Chiral Liquid Crystal Surfaces: From Shaping Mechanisms to Geometric Statistics. Nanomaterials, 2022, 12, 1555.	4.1	0
7	Recent advances in density functional theory and molecular dynamics simulation of mechanical, interfacial, and thermal properties of natural gas hydrates in Canada. Canadian Journal of Chemical Engineering, 2022, 100, 2557-2571.	1.7	2
8	Dynamic viscosity of methane hydrate systems from non-Einsteinian, plasma-functionalized carbon nanotube nanofluids. Nanoscale, 2022, 14, 10211-10225.	5.6	7
9	Multiscale Piezoelasticity of Methane Gas Hydrates: From Bonds to Cages to Lattices. Energy & Fuels, 2022, 36, 10591-10600.	5.1	10
10	Amphiphilic Block Copolymers with Vinyl Caprolactam as Kinetic Gas Hydrate Inhibitors. Energies, 2021, 14, 341.	3.1	13
11	Effects of Hydrophobic and Hydrophilic Graphene Nanoflakes on Methane Dissolution Rates in Water under Vapor–Liquid–Hydrate Equilibrium Conditions. Industrial & Engineering Chemistry Research, 2021, 60, 2677-2685.	3.7	7
12	Biaxial nanowrinkling in cholesteric surfaces: Egg carton surfaces through chiral anchoring. Colloids and Interface Science Communications, 2021, 41, 100372.	4.1	7
13	First-Principles Elastic and Anisotropic Characteristics of Structure-H Gas Hydrate under Pressure. Crystals, 2021, 11, 477.	2.2	9
14	The Tuning of LIPSS Wettability during Laser Machining and through Post-Processing. Nanomaterials, 2021, 11, 973.	4.1	14
15	Effects of nitrogen-doped graphene nanoflakes on methane hydrate formation. Journal of Natural Gas Science and Engineering, 2021, 96, 104336.	4.4	4
16	Heat Capacity, Thermal Expansion Coefficient, and Grüneisen Parameter of CH ₄ , CO ₂ , and C ₂ H ₆ Hydrates and Ice I _h via Density Functional Theory and Phonon Calculations. Crystal Growth and Design, 2020, 20, 5947-5955.	3.0	14
17	Elastic properties and anisotropic behavior of structure-H (sH) gas hydrate from first principles. Chemical Engineering Science, 2020, 227, 115948.	3.8	18
18	Rate of Entropy Production in Evolving Interfaces and Membranes under Astigmatic Kinematics: Shape Evolution in Geometric-Dissipation Landscapes. Entropy, 2020, 22, 909.	2.2	8

#	Article	IF	CITATIONS
19	From Infrared Spectra to Macroscopic Mechanical Properties of sH Gas Hydrates through Atomistic Calculations. Molecules, 2020, 25, 5568.	3.8	12
20	Mechanogeometry of nanowrinkling in cholesteric liquid crystal surfaces. Physical Review E, 2020, 101, 062705.	2.1	6
21	The behaviour of plasma-functionalized graphene nanoflake nanofluids during phase change from liquid water to solid ice. Nanotechnology, 2020, 31, 455703.	2.6	6
22	Multiscale Modeling and Simulation of Water and Methane Hydrate Crystal Interface. Crystal Growth and Design, 2019, 19, 5142-5151.	3.0	18
23	Effects of Hydrophobic and Hydrophilic Graphene Nanoflakes on Methane Hydrate Kinetics. Energy & Fuels, 2019, 33, 11705-11711.	5.1	15
24	Structural properties of sH hydrate: a DFT study of anisotropy and equation of state. Molecular Simulation, 2019, 45, 1524-1537.	2.0	15
25	Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation. Journal of Colloid and Interface Science, 2019, 557, 556-567.	9.4	21
26	Molecular dynamics characterization of the water-methane, ethane, and propane gas mixture interfaces. Chemical Engineering Science, 2019, 208, 114769.	3.8	20
27	Methane gas hydrate kinetics with mixtures of sodium dodecyl sulphate and tetrabutylammonium bromide. Canadian Journal of Chemical Engineering, 2018, 96, 1620-1626.	1.7	14
28	Molecular Dynamics Characterization of Temperature and Pressure Effects on the Water-Methane Interface. Colloids and Interface Science Communications, 2018, 24, 75-81.	4.1	24
29	Bulk liquid and gas mole fraction measurements during hydrate growth for the CH4+ CO2+ H2O system. Journal of Chemical Thermodynamics, 2018, 117, 113-118.	2.0	5
30	Poly(styrene/pentafluorostyrene)â€blockâ€poly(vinyl alcohol/vinylpyrrolidone) amphiphilic block copolymers for kinetic gas hydrate inhibitors: Synthesis, micellization behavior, and methane hydrate kinetic inhibition. Journal of Polymer Science Part A, 2018, 56, 2445-2457.	2.3	18
31	Kinetics of carbon dioxide gas hydrates with tetrabutylammonium bromide and functionalized multi-walled carbon nanotubes. Energy, 2017, 128, 414-420.	8.8	34
32	Role of induction time on carbon dioxide and methane gas hydrate kinetics. Journal of Natural Gas Science and Engineering, 2017, 43, 81-89.	4.4	16
33	Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling. Nanotechnology, 2017, 28, 055702.	2.6	9
34	Molecular mobility in carbon dioxide hydrates. Molecular Systems Design and Engineering, 2017, 2, 500-506.	3.4	7
35	Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state. AIP Advances, 2016, 6, .	1.3	31
36	Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies. Microscopy and Microanalysis, 2016, 22, 168-177.	0.4	17

#	Article	IF	CITATIONS
37	Surfactant Effects on Crystal Growth Dynamics and Crystal Morphology of Methane Hydrate Formed at Gas/Liquid Interface. Crystal Growth and Design, 2016, 16, 6084-6088.	3.0	65
38	Reaction rate constant of CO ₂ –Tetraâ€ <i>n</i> â€butylammounium bromide semiâ€clathrate formation. Canadian Journal of Chemical Engineering, 2016, 94, 2138-2144.	1.7	6
39	Ice-dependent liquid-phase convective cells during the melting of frozen sessile droplets containing water and multiwall carbon nanotubes. International Journal of Heat and Mass Transfer, 2016, 101, 27-37.	4.8	10
40	The effect of hydrate promoter SDS on methane dissolution rates at the three phase (H-Lw-V) equilibrium condition. Journal of Natural Gas Science and Engineering, 2016, 35, 1579-1586.	4.4	11
41	The effect of high driving force on the methane hydrate-polyvinylpyrrolidone system. Journal of Natural Gas Science and Engineering, 2016, 34, 1-5.	4.4	14
42	Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects. ACS Applied Materials & Interfaces, 2016, 8, 8789-8800.	8.0	111
43	Phase equilibria, solubility and modeling study of CO 2 /CH 4 + tetra- n -butylammonium bromide aqueous semi-clathrate systems. Fluid Phase Equilibria, 2015, 388, 160-168.	2.5	31
44	Effects of As-Produced and Amine-Functionalized Multi-Wall Carbon Nanotubes on Carbon Dioxide Hydrate Formation. Energy & Fuels, 2015, 29, 5259-5266.	5.1	25
45	Solubility measurements for the CH 4 Â+ÂC 2 H 6 Â+ÂH 2 O system under hydrate-liquid-vapour equilibrium. Journal of Natural Gas Science and Engineering, 2015, 26, 130-134.	4.4	3
46	Behavior of Surface-Functionalized Multiwall Carbon Nanotube Nanofluids during Phase Change from Liquid Water to Solid Ice. Crystal Growth and Design, 2015, 15, 3969-3982.	3.0	14
47	Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Applied Surface Science, 2015, 353, 512-521.	6.1	59
48	Profiling the Concentration of the Kinetic Inhibitor Polyvinylpyrrolidone throughout the Methane Hydrate Formation Process. Energy & Fuels, 2015, 29, 2329-2335.	5.1	28
49	Ideal Strength of Methane Hydrate and Ice I _h from First-Principles. Crystal Growth and Design, 2015, 15, 5301-5309.	3.0	39
50	New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 2. Liquid phase methane mole fraction. Chemical Engineering Science, 2015, 126, 91-98.	3.8	41
51	Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Optics and Lasers in Engineering, 2015, 66, 258-268.	3.8	101
52	New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 1. Growth rate. Chemical Engineering Science, 2015, 126, 99-105.	3.8	26
53	<i>Ab initio</i> DFT study of structural and mechanical properties of methane and carbon dioxide hydrates. Molecular Simulation, 2015, 41, 572-579.	2.0	35
54	Stressâ€ S ensor Device Based on Flexoelectric Liquid Crystalline Membranes. ChemPhysChem, 2014, 15, 1405-1412.	2.1	14

#	Article	IF	CITATIONS
55	The importance of liquid phase compositions in gas hydrate modeling: Carbon dioxide–methane–water case study. Journal of Chemical Thermodynamics, 2014, 68, 153-160.	2.0	9
56	Solubility Measurements for the N ₂ + CO ₂ + H ₂ O System under Hydrate–Liquid–Vapor Equilibrium. Journal of Chemical & Engineering Data, 2014, 59, 2547-2550.	1.9	8
57	The crystallization of sub-cooled water: Measuring the front velocity and mushy zone composition via thermal imaging. International Journal of Heat and Mass Transfer, 2014, 77, 940-945.	4.8	3
58	The Effect of Hydrophilic and Hydrophobic Multi-Wall Carbon Nanotubes on Methane Dissolution Rates in Water at Three Phase Equilibrium (Vâ^'L _w â^'H) Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 14519-14525.	3.7	27
59	Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics. Chemical Engineering Science, 2013, 104, 998-1002.	3.8	82
60	Measuring the Effect of Multi-Wall Carbon Nanotubes on Tetrahydrofuran–Water Hydrate Front Velocities Using Thermal Imaging. Crystal Growth and Design, 2013, 13, 4017-4024.	3.0	13
61	Evaluating Surfactants and Their Effect on Methane Mole Fraction during Hydrate Growth. Industrial & Engineering Chemistry Research, 2012, 51, 13144-13149.	3.7	30
62	Surfactant effects on methane solubility and mole fraction during hydrate growth. Chemical Engineering Science, 2012, 84, 80-84.	3.8	63
63	Gas hydrate phase equilibria measurement techniques and phase rule considerations. Journal of Chemical Thermodynamics, 2012, 44, 1-4.	2.0	10
64	Prediction of methane and carbon dioxide solubilities for the CH4+CO2+H2O system under hydrate–liquid–vapor equilibrium. Fluid Phase Equilibria, 2011, 305, 97-100.	2.5	8
65	Theoretical pressure dependency of carbon dioxide solubility under hydrate–liquid water equilibrium. Canadian Journal of Chemical Engineering, 2010, 88, 307-311.	1.7	2
66	Reaction rate constant of methane clathrate formation. Fuel, 2010, 89, 294-301.	6.4	37
67	Solubility measurements for the CH4 + CO2 + H2O system under hydrate–liquid–vapor equilibrium. Fluid Phase Equilibria, 2010, 296, 106-109.	2.5	44
68	Hâ^'L _W â^'V Equilibrium Measurements for the CH ₄ + C ₂ H ₆ + H ₂ O Hydrate Forming System. Journal of Chemical & Engineering Data, 2010, 55, 3680-3683.	1.9	4
69	Morphological Investigations of Methaneâ `Hydrate Films Formed on a Glass Surface. Crystal Growth and Design, 2010, 10, 4339-4347.	3.0	63
70	CO2 and CH4 mole fraction measurements during hydrate growth in a semi-batch stirred tank reactor and its significance to kinetic modeling. Fluid Phase Equilibria, 2009, 276, 150-155.	2.5	35
71	Gas–liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions. Chemical Engineering Science, 2009, 64, 3709-3716.	3.8	42
72	Morphology Study of Structure I Methane Hydrate Formation and Decomposition of Water Droplets in the Presence of Biological and Polymeric Kinetic Inhibitors. Crystal Growth and Design, 2009, 9, 3014-3023.	3.0	56

#	Article	IF	CITATIONS
73	Dynamic Simulation of Gas Hydrate Formation in a Three-Phase Slurry Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 6983-6991.	3.7	7
74	Reaction rate constant of CO ₂ hydrate formation and verification of old premises pertaining to hydrate growth kinetics. AICHE Journal, 2008, 54, 2964-2970.	3.6	32
75	Reaction rate constant of propane hydrate formation. Fluid Phase Equilibria, 2008, 265, 30-36.	2.5	44
76	The effect of biological and polymeric inhibitors on methane gas hydrate growth kinetics. Fluid Phase Equilibria, 2008, 267, 92-98.	2.5	64
77	Equilibrium Studies for the System Methane + Carbon Dioxide + Neohexane + Water. Journal of Chemical & Engineering Data, 2008, 53, 1745-1749.	1.9	38
78	Vaporâ^'Liquid Waterâ^'Hydrate Equilibrium Data for the System N ₂ + CO ₂ + H ₂ O. Journal of Chemical & Engineering Data, 2008, 53, 2594-2597.	1.9	43
79	Gas Hydrate Growth Model in a Semibatch Stirred Tank Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 5907-5912.	3.7	54
80	Measurement of Dissolved Propane in Water in the Presence of Gas Hydrate. Journal of Chemical & Engineering Data, 2007, 52, 1449-1451.	1.9	31
81	Theoretical temperature dependency of gas hydrate former solubility under hydrate-liquid water equilibrium. Journal of Chemical Thermodynamics, 2007, 39, 737-741.	2.0	7
82	Prediction of methane and carbon dioxide solubility in water in the presence of hydrate. Fluid Phase Equilibria, 2006, 246, 131-136.	2.5	58
83	Fundamental challenges to methane recovery from gas hydrates. Topics in Catalysis, 2005, 32, 101-104.	2.8	3
84	Morphology of methane and carbon dioxide hydrates formed from water droplets. AICHE Journal, 2003, 49, 269-276.	3.6	134
85	Morphology Study of Structure H Hydrate Formation from Water Droplets. Crystal Growth and Design, 2003, 3, 61-66.	3.0	45
86	Measurement of Dissolved Methane in Water in Equilibrium with Its Hydrate. Journal of Chemical & Engineering Data, 2002, 47, 87-90.	1.9	176
87	Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate. Fluid Phase Equilibria, 2001, 190, 127-134.	2.5	152
88	Incipient Equilibrium Propane Hydrate Formation Conditions in Aqueous Triethylene Glycol Solutions. Journal of Chemical & Engineering Data, 1997, 42, 800-801.	1.9	19