Ann-Christine Albertsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771439/publications.pdf Version: 2024-02-01

		11651	19749
322	17,855	70	117
papers	citations	h-index	g-index
331	331	331	13345
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Future of Biomacromolecules at a Crossroads of Polymer Science and Biology. Biomacromolecules, 2020, 21, 1-6.	5.4	6
2	Polyhydroxyalkanoates and Other Biopolymers. Biomacromolecules, 2019, 20, 3211-3212.	5.4	12
3	Celebrating 20 years of <i>Biomacromolecules</i> !. Biomacromolecules, 2019, 20, 767-768.	5.4	3
4	Recyclable Fully Biobased Chitosan Adsorbents Spray-Dried in One Pot to Microscopic Size and Enhanced Adsorption Capacity. Biomacromolecules, 2019, 20, 1956-1964.	5.4	28
5	Rational Design of Multifunctional Renewable-Resourced Materials. Biomacromolecules, 2019, 20, 569-572.	5.4	2
6	Editorial. Biomacromolecules, 2018, 19, 1-2.	5.4	1
7	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
8	Editorial. Biomacromolecules, 2017, 18, 313-314.	5.4	0
9	Synthesis of full interpenetrating hemicellulose hydrogel networks. Carbohydrate Polymers, 2017, 170, 254-263.	10.2	31
10	Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chemical Reviews, 2017, 117, 8177-8207.	47.7	50
11	Designed to degrade. Science, 2017, 358, 872-873.	12.6	235
12	Highlighting the Importance of Surface Grafting in Combination with a Layer-by-Layer Approach for Fabricating Advanced 3D Poly(<scp>l</scp> -lactide) Microsphere Scaffolds. Chemistry of Materials, 2016, 28, 3298-3307.	6.7	8
13	Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying. Biomacromolecules, 2016, 17, 2930-2936.	5.4	7
14	Green Semi-IPN Hydrogels by Direct Utilization of Crude Wood Hydrolysates. ACS Sustainable Chemistry and Engineering, 2016, 4, 4370-4377.	6.7	23
15	Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature. Biomacromolecules, 2016, 17, 3995-4002.	5.4	62
16	Toward "Green―Hybrid Materials: Core–Shell Particles with Enhanced Impact Energy Absorbing Ability. ACS Sustainable Chemistry and Engineering, 2016, 4, 3757-3765.	6.7	7
17	Forecasting linear aliphatic copolyester degradation through modular block design. Polymer Degradation and Stability, 2016, 130, 58-67.	5.8	11
18	Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization. Biomacromolecules, 2016, 17, 699-709.	5.4	160

#	Article	IF	CITATIONS
19	Controlled copolymerization of the functional 5-membered lactone monomer, α-bromo-γ-butyrolactone, via selective organocatalysis. Polymer, 2016, 87, 17-25.	3.8	14
20	Recycling Oxidized Model Polyethylene Powder as a Degradation Enhancing Filler for Polyethylene/Polycaprolactone Blends. ACS Sustainable Chemistry and Engineering, 2016, 4, 129-135.	6.7	21
21	Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
22	Tuning loading and release by modification of micelle core crystallinity and preparation. Polymers for Advanced Technologies, 2015, 26, 880-888.	3.2	16
23	The nature of polymer grafts and substrate shape on the surface degradation of poly(<scp>l</scp> â€lactide). Journal of Applied Polymer Science, 2015, 132, .	2.6	5
24	Disaggregation and Anionic Activation of Nanodiamonds Mediated by Sodium Hydride—A New Route to Functional Aliphatic Polyesterâ€Based Nanodiamond Materials. Particle and Particle Systems Characterization, 2015, 32, 35-42.	2.3	14
25	Macromolecular Design via an Organocatalytic, Monomer-Specific and Temperature-Dependent "On/Off Switch― High Precision Synthesis of Polyester/Polycarbonate Multiblock Copolymers. Macromolecules, 2015, 48, 1703-1710.	4.8	47
26	Reinforced Degradable Biocomposite by Homogenously Distributed Functionalized Nanodiamond Particles. Macromolecular Materials and Engineering, 2015, 300, 436-447.	3.6	21
27	Thiolated Hemicellulose As a Versatile Platform for One-Pot Click-Type Hydrogel Synthesis. Biomacromolecules, 2015, 16, 667-674.	5.4	44
28	In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying. ACS Applied Materials & Interfaces, 2015, 7, 4202-4215.	8.0	40
29	In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 2015, 16, 2522-2528.	5.4	150
30	Barriers from wood hydrolysate/quaternized cellulose polyelectrolyte complexes. Cellulose, 2015, 22, 1977-1991.	4.9	12
31	Selective degradation in aliphatic block copolyesters by controlling the heterogeneity of the amorphous phase. Polymer Chemistry, 2015, 6, 3271-3282.	3.9	25
32	Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites. ACS Sustainable Chemistry and Engineering, 2015, 3, 2220-2231.	6.7	50
33	<i>Staphylococcus epidermidis</i> Bacteremia Induces Brain Injury in Neonatal Mice via Toll-like Receptor 2-Dependent and -Independent Pathways. Journal of Infectious Diseases, 2015, 212, 1480-1490.	4.0	33
34	Enhanced formability and mechanical performance of wood hydrolysate films through reductive amination chain extension. Carbohydrate Polymers, 2015, 117, 346-354.	10.2	14
35	Nanoâ€Stereocomplexation of Polylactide (PLA) Spheres by Spray Droplet Atomization. Macromolecular Rapid Communications, 2014, 35, 1949-1953.	3.9	28
36	The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. Journal of Neuroinflammation, 2014, 11, 153.	7.2	63

#	Article	IF	CITATIONS
37	The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. Journal of Neuroinflammation, 2014, 11, 197.	7.2	28
38	Preparation for drilling well IDDP-2 at Reykjanes. Geothermics, 2014, 49, 119-126.	3.4	20
39	Exploring the Biodegradation Potential of Polyethylene Through a Simple Chemical Test Method. Journal of Polymers and the Environment, 2014, 22, 69-77.	5.0	17
40	The concept of the Iceland deep drilling project. Geothermics, 2014, 49, 2-8.	3.4	71
41	Establishing α-bromo-γ-butyrolactone as a platform for synthesis of functional aliphatic polyesters – bridging the gap between ROP and SET-LRP. Polymer Chemistry, 2014, 5, 3847-3854.	3.9	31
42	Induced redox responsiveness and electroactivity for altering the properties of micelles without external stimuli. Soft Matter, 2014, 10, 4028-4036.	2.7	12
43	Adjustable Degradation Properties and Biocompatibility of Amorphous and Functional Poly(ester-acrylate)-Based Materials. Biomacromolecules, 2014, 15, 2800-2807.	5.4	41
44	Surfactant as a Critical Factor When Tuning the Hydrophilicity in Three-Dimensional Polyester-Based Scaffolds: Impact of Hydrophilicity on Their Mechanical Properties and the Cellular Response of Human Osteoblast-Like Cells. Biomacromolecules, 2014, 15, 1259-1268.	5.4	18
45	Tuning the Degradation Profiles of Poly(<scp>l</scp> -lactide)-Based Materials through Miscibility. Biomacromolecules, 2014, 15, 391-402.	5.4	69
46	Ring-Closing Depolymerization: A Powerful Tool for Synthesizing the Allyloxy-Functionalized Six-Membered Aliphatic Carbonate Monomer 2-Allyloxymethyl-2-ethyltrimethylene Carbonate. Macromolecules, 2014, 47, 6189-6195.	4.8	54
47	Upgrading of wood pre-hydrolysis liquor for renewable barrier design: a techno-economic consideration. Cellulose, 2014, 21, 2045-2062.	4.9	8
48	Unrefined wood hydrolysates are viable reactants for the reproducible synthesis of highly swellable hydrogels. Carbohydrate Polymers, 2014, 108, 281-290.	10.2	17
49	Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chemistry of Materials, 2014, 26, 4265-4273.	6.7	83
50	Drilling into magma and the implications of the Iceland Deep Drilling Project (IDDP) for high-temperature geothermal systems worldwide. Geothermics, 2014, 49, 111-118.	3.4	92
51	A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer, 2014, 55, 2967-2976.	3.8	76
52	Adapting wood hydrolysate barriers to high humidity conditions. Carbohydrate Polymers, 2014, 100, 135-142.	10.2	19
53	A controlled radical polymerization route to polyepoxidated grafted hemicellulose materials. Polimery, 2014, 59, 60-65.	0.7	10
54	Polyesters with small structural variations improve the mechanical properties of polylactide. Journal of Applied Polymer Science, 2013, 127, 27-33.	2.6	23

ANN-CHRISTINE ALBERTSSON

#	Article	IF	CITATIONS
55	Stereocomplexation between PLA-like substituted oligomers and the influence on the hydrolytic degradation. Polymer, 2013, 54, 4105-4111.	3.8	36
56	Îμ-Decalactone: A Thermoresilient and Toughening Comonomer to Poly(<scp>l</scp> -lactide). Biomacromolecules, 2013, 14, 2883-2890.	5.4	110
57	Crosslinked PVAL nanofibers with enhanced longâ€ŧerm stability prepared by singleâ€step electrospinning. Polymers for Advanced Technologies, 2013, 24, 421-429.	3.2	6
58	Achieving Micelle Control through Core Crystallinity. Biomacromolecules, 2013, 14, 4150-4156.	5.4	105
59	Turning Hardwood Dissolving Pulp Polysaccharide Residual Material into Barrier Packaging. Biomacromolecules, 2013, 14, 2929-2936.	5.4	34
60	Copolymerization of 2-Methylene-1,3-dioxepane and Glycidyl Methacrylate, a Well-Defined and Efficient Process for Achieving Functionalized Polyesters for Covalent Binding of Bioactive Molecules. Biomacromolecules, 2013, 14, 2095-2102.	5.4	57
61	Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 2013, 38, 1263-1286.	24.7	527
62	Innovative Approaches for Converting a Wood Hydrolysate to High-Quality Barrier Coatings. ACS Applied Materials & Interfaces, 2013, 5, 7748-7757.	8.0	13
63	Force Interactions of Nonagglomerating Polylactide Particles Obtained through Covalent Surface Grafting with Hydrophilic Polymers. Langmuir, 2013, 29, 8873-8881.	3.5	12
64	Polylactides with "green―plasticizers: Influence of isomer composition. Journal of Applied Polymer Science, 2013, 130, 2962-2970.	2.6	22
65	Wood Hydrolysate Barriers: Performance Controlled via Selective Recovery. Biomacromolecules, 2012, 13, 466-473.	5.4	44
66	Nondestructive Covalent "Grafting-from―of Poly(lactide) Particles of Different Geometries. ACS Applied Materials & Interfaces, 2012, 4, 2978-2984.	8.0	18
67	Prehydrolysis in Softwood Pulping Produces a Valuable Biorefinery Fraction for Material Utilization. Environmental Science & Technology, 2012, 46, 8389-8396.	10.0	25
68	Positron Lifetime Reveals the Nano Level Packing in Complex Polysaccharide-Rich Hydrolysate Matrixes. Analytical Chemistry, 2012, 84, 3676-3681.	6.5	11
69	Retrostructural Model To Predict Biomass Formulations for Barrier Performance. Biomacromolecules, 2012, 13, 2570-2577.	5.4	9
70	Nanoclay effects on the degradation process and product patterns of polylactide. Polymer Degradation and Stability, 2012, 97, 1254-1260.	5.8	42
71	Frontiers in Biomacromolecules: Functional Materials from Nature. Biomacromolecules, 2012, 13, 3901-3901.	5.4	3
72	Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(<scp>L</scp> -lactide). ACS Applied Materials & Interfaces, 2012, 4, 2788-2793.	8.0	111

ANN-CHRISTINE ALBERTSSON

#	Article	IF	CITATIONS
73	Electroactive Hydrophilic Polylactide Surface by Covalent Modification with Tetraaniline. Macromolecules, 2012, 45, 652-659.	4.8	62
74	Modification of birch xylan by lactide-grafting. Nordic Pulp and Paper Research Journal, 2012, 27, 518-524.	0.7	4
75	Synthetic pathways enables the design of functionalized poly(lactic acid) with pendant mercapto groups. Journal of Polymer Science Part A, 2012, 50, 792-800.	2.3	14
76	SETâ€LRP goes "green†Various hemicellulose initiating systems under nonâ€inert conditions. Journal of Polymer Science Part A, 2012, 50, 2650-2658.	2.3	32
77	Mainâ€chain functionalization of poly(<scp>L</scp> â€lactide) with pendant unsaturations. Journal of Polymer Science Part A, 2012, 50, 3039-3045.	2.3	3
78	Random introduction of degradable linkages into functional vinyl polymers by radical ring-opening polymerization, tailored for soft tissue engineering. Polymer Chemistry, 2012, 3, 1260.	3.9	74
79	Customizing the Hydrolytic Degradation Rate of Stereocomplex PLA through Different PDLA Architectures. Biomacromolecules, 2012, 13, 1212-1222.	5.4	98
80	Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces. Biomedical Materials (Bristol), 2012, 7, 035011.	3.3	23
81	Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a threeâ€dimensional fiber deposition method. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2739-2749.	4.0	32
82	Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomaterialia, 2012, 8, 144-153.	8.3	105
83	Microsphere valorization of forestry derived hydrolysates. European Polymer Journal, 2012, 48, 372-383.	5.4	3
84	Odour perception – A rapid and easy method to detect early degradation of polymers. Polymer Degradation and Stability, 2012, 97, 481-487.	5.8	19
85	Long-term properties and migration of low molecular mass compounds from modified PLLA materials during accelerated ageing. Polymer Degradation and Stability, 2012, 97, 914-920.	5.8	21
86	Assessing the Degradation Profile of Functional Aliphatic Polyesters with Precise Control of the Degradation Products. Macromolecular Bioscience, 2012, 12, 260-268.	4.1	15
87	Macromolecular Design of Aliphatic Polyesters with Maintained Mechanical Properties and a Rapid, Customized Degradation Profile. Biomacromolecules, 2011, 12, 2382-2388.	5.4	26
88	Conceptual Approach to Renewable Barrier Film Design Based on Wood Hydrolysate. Biomacromolecules, 2011, 12, 1355-1362.	5.4	65
89	Hemicellulose-Based Multifunctional Macroinitiator for Single-Electron-Transfer Mediated Living Radical Polymerization. Biomacromolecules, 2011, 12, 253-259.	5.4	51
90	Degradable and Electroactive Hydrogels with Tunable Electrical Conductivity and Swelling Behavior. Chemistry of Materials, 2011, 23, 1254-1262.	6.7	149

#	Article	IF	CITATIONS
91	Simple Route to Size-Tunable Degradable and Electroactive Nanoparticles from the Self-Assembly of Conducting Coil–Rod–Coil Triblock Copolymers. Chemistry of Materials, 2011, 23, 4045-4055.	6.7	47
92	Degradable Polyethylene: Fantasy or Reality. Environmental Science & Technology, 2011, 45, 4217-4227.	10.0	184
93	Facile Synthesis of Degradable and Electrically Conductive Polysaccharide Hydrogels. Biomacromolecules, 2011, 12, 2601-2609.	5.4	152
94	Porosity and Pore Size Regulate the Degradation Product Profile of Polylactide. Biomacromolecules, 2011, 12, 1250-1258.	5.4	113
95	Universal Two-Step Approach to Degradable and Electroactive Block Copolymers and Networks from Combined Ring-Opening Polymerization and Post-Functionalization via Oxidative Coupling Reactions. Macromolecules, 2011, 44, 5227-5236.	4.8	58
96	Compatibilizers of a purposely designed graft copolymer for hydrolysate/PLLA blends. Polymer, 2011, 52, 4648-4655.	3.8	11
97	From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 2011, 12, 523-532.	5.4	573
98	Covalent VEGF protein immobilization on resorbable polymeric surfaces. Polymers for Advanced Technologies, 2011, 22, 2368-2373.	3.2	5
99	Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. Journal of Polymer Science Part A, 2011, 49, 2097-2105.	2.3	60
100	A versatile singleâ€electronâ€transfer mediated living radical polymerization route to galactoglucomannan graftâ€copolymers with tunable hydrophilicity. Journal of Polymer Science Part A, 2011, 49, 2366-2372.	2.3	39
101	Macroinitiator halide effects in galactoglucomannanâ€mediated single electron transferâ€living radical polymerization. Journal of Polymer Science Part A, 2011, 49, 4139-4145.	2.3	14
102	Functional and Highly Porous Scaffolds for Biomedical Applications. Macromolecular Bioscience, 2011, 11, 1432-1442.	4.1	12
103	Effect of endothelial cells on bone regeneration using poly(<scp>L</scp> ″actideâ€ <i>co</i> ″,5â€dioxepanâ€2â€one) scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 96A, 349-357.	4.0	37
104	Global Gene Expression Profile of Osteoblast-Like Cells Grown on Polyester Copolymer Scaffolds. Tissue Engineering - Part A, 2011, 17, 2817-2831.	3.1	5
105	Modified Galactoglucomannans from Forestry Waste-water for Films and Hydrogels. ACS Symposium Series, 2010, , 185-198.	0.5	2
106	Polyester copolymer scaffolds enhance expression of bone markers in osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2010, 94A, 631-639.	4.0	29
107	Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: An <i>in vitro</i> study. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1244-1251.	4.0	27
108	The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion. Polymer, 2010, 51, 5318-5322.	3.8	36

#	Article	IF	CITATIONS
109	Bioâ€safe synthesis of linear and branched PLLA. Journal of Polymer Science Part A, 2010, 48, 1214-1219.	2.3	17
110	Synthesis of amorphous aliphatic polyesterâ€ether homo―and copolymers by radical polymerization of ketene acetals. Journal of Polymer Science Part A, 2010, 48, 4965-4973.	2.3	32
111	Response of Bone and Periodontal Ligament Cells to Biodegradable Polymer Scaffolds In Vitro. Journal of Bioactive and Compatible Polymers, 2010, 25, 584-602.	2.1	16
112	Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds. Journal of Bioactive and Compatible Polymers, 2010, 25, 207-223.	2.1	53
113	Polylactide Stereocomplexation Leads to Higher Hydrolytic Stability but More Acidic Hydrolysis Product Pattern. Biomacromolecules, 2010, 11, 1067-1073.	5.4	151
114	Molecular Architecture of Electroactive and Biodegradable Copolymers Composed of Polylactide and Carboxyl-Capped Aniline Trimer. Biomacromolecules, 2010, 11, 855-863.	5.4	91
115	Enhanced Electrical Conductivity by Macromolecular Architecture: Hyperbranched Electroactive and Degradable Block Copolymers Based on Poly(ε-caprolactone) and Aniline Pentamer. Macromolecules, 2010, 43, 4472-4480.	4.8	92
116	Design of Renewable Hydrogel Release Systems from Fiberboard Mill Wastewater. Biomacromolecules, 2010, 11, 1406-1411.	5.4	48
117	Barrier Films from Renewable Forestry Waste. Biomacromolecules, 2010, 11, 2532-2538.	5.4	114
118	Surface Modification Changes the Degradation Process and Degradation Product Pattern of Polylactide. Langmuir, 2010, 26, 378-383.	3.5	76
119	Tuning the Polylactide Hydrolysis Rate by Plasticizer Architecture and Hydrophilicity without Introducing New Migrants. Biomacromolecules, 2010, 11, 3617-3623.	5.4	62
120	Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering. Journal of Bioactive and Compatible Polymers, 2010, 25, 567-583.	2.1	41
121	Design of Elastomeric Homo- and Copolymer Networks of Functional Aliphatic Polyester for Use in Biomedical Applications. Chemistry of Materials, 2010, 22, 3009-3014.	6.7	28
122	Migration and Hydrolysis of Hydrophobic Polylactide Plasticizer. Biomacromolecules, 2010, 11, 277-283.	5.4	102
123	Drug diffusion in neutral and ionic hydrogels assembled from acetylated galactoglucomannan. Journal of Applied Polymer Science, 2009, 112, 2401-2412.	2.6	37
124	Alkenylâ€functionalized precursors for renewable hydrogels design. Journal of Polymer Science Part A, 2009, 47, 3595-3606.	2.3	42
125	Mapping the characteristics of the radical ringâ€opening polymerization of a cyclic ketene acetal towards the creation of a functionalized polyester. Journal of Polymer Science Part A, 2009, 47, 4587-4601.	2.3	25
126	Design of Resorbable Porous Tubular Copolyester Scaffolds for Use in Nerve Regeneration. Biomacromolecules, 2009, 10, 1259-1264.	5.4	80

#	Article	IF	CITATIONS
127	Degradable Porous Scaffolds from Various <scp>l</scp> -Lactide and Trimethylene Carbonate Copolymers Obtained by a Simple and Effective Method. Biomacromolecules, 2009, 10, 149-154.	5.4	58
128	MALDI-TOF MS Reveals the Molecular Level Structures of Different Hydrophilicâ^'Hydrophobic Polyether-esters. Biomacromolecules, 2009, 10, 1540-1546.	5.4	21
129	Precision synthesis of microstructures in starâ€shaped copolymers of ϵâ€caprolactone, <scp>L</scp> â€lactide, and 1,5â€dioxepanâ€2â€one. Journal of Polymer Science Part A, 2008, 46, 1249-1264.	2.3	33
130	Fingerprinting the degradation product patterns of different polyesterâ€ether networks by electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2008, 46, 4617-4629.	2.3	33
131	Spontaneous crosslinking of poly(1,5â€dioxepanâ€2â€one) originating from ether bond fragmentation. Journal of Polymer Science Part A, 2008, 46, 7258-7267.	2.3	9
132	Resorbable Scaffolds from Three Different Techniques: Electrospun Fabrics, Salt‣eaching Porous Films, and Smooth Flat Surfaces. Macromolecular Bioscience, 2008, 8, 951-959.	4.1	22
133	Surface Functionalization of Porous Resorbable Scaffolds by Covalent Grafting. Macromolecular Bioscience, 2008, 8, 645-654.	4.1	16
134	The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Biomaterials, 2008, 29, 129-140.	11.4	41
135	Recent developments in enzyme-catalyzed ring-opening polymerizationâ [~] †. Advanced Drug Delivery Reviews, 2008, 60, 1077-1093.	13.7	191
136	A Strategy for the Covalent Functionalization of Resorbable Polymers with Heparin and Osteoinductive Growth Factor. Biomacromolecules, 2008, 9, 901-905.	5.4	71
137	Degradation Products of Aliphatic and Aliphatic–Aromatic Polyesters. , 2008, , 85-116.		37
138	Chromatographic Analysis of Antioxidants in Polymeric Materials and Their Migration from Plastics into Solution. , 2008, , 117-157.		10
139	Rapid Deswelling Response of Poly(N-isopropylacrylamide)/Poly(2-alkyl-2-oxazoline)/Poly(2-hydroxyethyl methacrylate) Hydrogels. Biomacromolecules, 2008, 9, 1678-1683.	5.4	40
140	Enzymatic Degradation of Monolayer for Poly(lactide) Revealed by Real-Time Atomic Force Microscopy: Effects of Stereochemical Structure, Molecular Weight, and Molecular Branches on Hydrolysis Rates. Biomacromolecules, 2008, 9, 2180-2185.	5.4	41
141	Protein Release from Galactoglucomannan Hydrogels: Influence of Substitutions and Enzymatic Hydrolysis by β-Mannanase. Biomacromolecules, 2008, 9, 2104-2110.	5.4	47
142	ESI-MS Reveals the Influence of Hydrophilicity and Architecture on the Water-Soluble Degradation Product Patterns of Biodegradable Homo- and Copolyesters of 1,5-dioxepan-2-one and Îμ-Caprolactone. Macromolecules, 2008, 41, 3547-3554.	4.8	58
143	Hydrogels from Polysaccharides for Biomedical Applications. ACS Symposium Series, 2007, , 153-167.	0.5	33
144	Tuning the Release Rate of Acidic Degradation Products through Macromolecular Design of Caprolactone-Based Copolymers. Journal of the American Chemical Society, 2007, 129, 6308-6312.	13.7	101

#	Article	IF	CITATIONS
145	Branched Poly(lactide) Synthesized by Enzymatic Polymerization:  Effects of Molecular Branches and Stereochemistry on Enzymatic Degradation and Alkaline Hydrolysis. Biomacromolecules, 2007, 8, 3115-3125.	5.4	123
146	Controllable Degradation Product Migration from Cross-Linked Biomedical Polyester-Ethers through Predetermined Alterations in Copolymer Composition. Biomacromolecules, 2007, 8, 2025-2032.	5.4	50
147	Covalent Grafting of Poly(<scp>l</scp> -lactide) to Tune the In Vitro Degradation Rate. Biomacromolecules, 2007, 8, 2492-2496.	5.4	75
148	Microblock Copolymers as a Result of Transesterification Catalyzing Behavior of Lipase CA in Sequential ROP. Macromolecules, 2007, 40, 4464-4469.	4.8	21
149	Industrial Utilization of Tin-Initiated Resorbable Polymers:Â Synthesis on a Large Scale with a Low Amount of Initiator Residue. Biomacromolecules, 2007, 8, 937-940.	5.4	69
150	Chemo-enzymatic synthesis of comb polymers. European Polymer Journal, 2007, 43, 808-817.	5.4	29
151	Polymer–water partition coefficients of extended range measured by using organic modifiers in the aqueous phase. Polymer, 2007, 48, 7523-7530.	3.8	8
152	Build-up of carboxylic acids in polyethylene and their relation to off-flavor and carbonyl index. Journal of Polymer Science Part A, 2007, 45, 1848-1859.	2.3	3
153	Bulk polymerization of <i>p</i> â€dioxanone using a cyclic tin alkoxide as initiator. Journal of Polymer Science Part A, 2007, 45, 5552-5558.	2.3	12
154	Quantitative Determination of Volatiles in Polymers and Quality Control of Recycled Materials by Static Headspace Techniques. , 2007, , 51-84.		8
155	Indicator Products and Chromatographic Fingerprinting: New Tools for Degradation State and Lifetime Estimation. , 2007, , 1-22.		4
156	THE USE OF POLYMER DESIGN IN RESORBABLE COLLOIDS. Annual Review of Materials Research, 2006, 36, 369-395.	9.3	18
157	Porous Scaffolds from High Molecular Weight Polyesters Synthesized via Enzyme-Catalyzed Ring-Opening Polymerization. Biomacromolecules, 2006, 7, 2531-2538.	5.4	39
158	Enzyme-Catalyzed Ring-Opening Polymerization of Seven-Membered Ring Lactones Leading to Terminal-Functionalized and Triblock Polyesters. Macromolecules, 2006, 39, 46-54.	4.8	63
159	Resilient Bioresorbable Copolymers Based on Trimethylene Carbonate,l-Lactide, and 1,5-Dioxepan-2-one. Biomacromolecules, 2006, 7, 1489-1495.	5.4	97
160	Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers. Biomacromolecules, 2006, 7, 1983-1989.	5.4	113
161	Versatile and controlled synthesis of resorbable star-shaped polymers using a spirocyclic tin initiator—Reaction optimization and kinetics. Journal of Polymer Science Part A, 2006, 44, 596-605.	2.3	20
162	Improvement of α-tocopherols long-term efficiency by modeling its heterogeneous natural environment in polyethylene. Journal of Polymer Science Part A, 2006, 44, 1660-1666.	2.3	14

#	Article	IF	CITATIONS
163	Total luminescence intensity (TLI) offers superior early oxidation detection in unstabilised polyethylene but is no better than FT-IR for stabilised polyolefins. European Polymer Journal, 2006, 42, 1855-1865.	5.4	7
164	Phenolic prepreg waste as functional filler with antioxidant effect in polypropylene and polyamide-6. Polymer Degradation and Stability, 2006, 91, 1815-1823.	5.8	11
165	Chromatographic Analysis and Total Luminescence Intensity as Tools for Early Degradation Detection and Degradation State Estimation. ACS Symposium Series, 2006, , 307-319.	0.5	1
166	Emission of Volatiles from Polymers — A New Approach for Understanding Polymer Degradation. Journal of Polymers and the Environment, 2006, 14, 9-13.	5.0	17
167	Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. Journal of Applied Polymer Science, 2006, 100, 2985-2991.	2.6	180
168	Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science, 2005, 30, 949-981.	24.7	257
169	Chromatographic fingerprinting – a tool for classification and for predicting the degradation state of degradable polyethylene. Polymer Degradation and Stability, 2005, 89, 50-63.	5.8	18
170	Potential tissue implants from the networks based on 1,5-dioxepan-2-one and ε-caprolactone. Polymer, 2005, 46, 6746-6755.	3.8	42
171	Solid-phase microextraction for qualitative and quantitative determination of migrated degradation products of antioxidants in an organic aqueous solution. Journal of Chromatography A, 2005, 1080, 107-116.	3.7	47
172	Enzyme-catalyzed copolymerization of oxiranes with dicarboxylic acid anhydrides. Journal of Applied Polymer Science, 2005, 97, 697-704.	2.6	12
173	Process efficiency and long-term performance of α-tocopherol in film-blown linear low-density polyethylene. Journal of Applied Polymer Science, 2005, 98, 2427-2439.	2.6	21
174	High-molecular-weight poly(1,5-dioxepan-2-one) via enzyme-catalyzed ring-opening polymerization. Journal of Polymer Science Part A, 2005, 43, 4206-4216.	2.3	33
175	Evaluation of long-term performance of antioxidants using prooxidants instead of thermal acceleration. Journal of Polymer Science Part A, 2005, 43, 4537-4546.	2.3	10
176	Synthesis of core-shell structured carboxylated microparticles with a straightforward procedure and their evaluation as a polymer support. Journal of Polymer Science Part A, 2005, 43, 5889-5898.	2.3	9
177	Suitable Materials for Soft Tissue Reconstruction: In Vitro Studies of Cell – Triblock Copolymer Interactions. Journal of Bioactive and Compatible Polymers, 2005, 20, 509-526.	2.1	11
178	Single-Step Covalent Functionalization of Polylactide Surfaces. Journal of the American Chemical Society, 2005, 127, 8865-8871.	13.7	101
179	Biodegradable Polymers from Renewable Sources:Â Rheological Characterization of Hemicellulose-Based Hydrogels. Biomacromolecules, 2005, 6, 684-690.	5.4	93
180	Indicator Products: A New Tool for Lifetime Prediction of Polymeric Materials. Biomacromolecules, 2005, 6, 775-779.	5.4	19

#	Article	IF	CITATIONS
181	Special Section on Polymer Biomaterials. Biomacromolecules, 2005, 6, 1159-1159.	5.4	1
182	Special Section on Biological Polyesters. Biomacromolecules, 2005, 6, 531-531.	5.4	1
183	Elastomeric Hydrolyzable Porous Scaffolds:Â Copolymers of Aliphatic Polyesters and a Polyetherâ^'ester. Biomacromolecules, 2005, 6, 2718-2725.	5.4	95
184	Nano patterned covalent surface modification of poly(e-caprolactone). Israel Journal of Chemistry, 2005, 45, 429-435.	2.3	4
185	Solvent-Free Vapor-Phase Photografting of Acrylamide onto Poly(ethylene terephthalate). Biomacromolecules, 2005, 6, 2697-2702.	5.4	31
186	Special Section on Chitin. Biomacromolecules, 2005, 6, 2381-2381.	5.4	0
187	Recycling of Glass Fibre Reinforced Phenolic Prepreg Waste Part 1. Recovery and Reuse of Glass Fibres in PP and PA6. Polymers and Polymer Composites, 2004, 12, 491-500.	1.9	2
188	Recycling of Glass-fibre Reinforced Phenolic Prepreg Waste. Part 2. Milled Prepreg as Functional Filler in PP and PA6. Polymers and Polymer Composites, 2004, 12, 501-509.	1.9	2
189	Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene) Tj ETQq1 1 0.7843	31 4.7 gBT /	Overlock 10
190	New functionalized polyesters to achieve controlled architectures. Journal of Polymer Science Part A, 2004, 42, 444-452.	2.3	27
191	Oxygen microwave plasma treatment of silicone elastomer: Kinetic behavior and surface composition. Journal of Applied Polymer Science, 2004, 91, 4098-4104.	2.6	24
192	Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate). Polymer Degradation and Stability, 2004, 83, 487-493.	5.8	55
193	Electron Beam-Induced Graft Polymerization of Acrylic Acid and Immobilization of Arginineâ^'Glycineâ^'Aspartic Acid-Containing Peptide onto Nanopatterned Polycaprolactone. Biomacromolecules, 2004, 5, 2275-2280.	5.4	42
194	Environmental Degradation of Polyethylene. Advances in Polymer Science, 2004, , 177-200.	0.8	122
195	Solid-phase microextraction (SPME) in polymer characterization-Long-term properties and quality control of polymeric materials. Journal of Applied Polymer Science, 2003, 89, 867-873.	2.6	34
196	Silicone elastomers with controlled surface composition using argon or hydrogen plasma treatment. Journal of Applied Polymer Science, 2003, 90, 1378-1383.	2.6	10
197	Polyester hydrogels with swelling properties controlled by the polymer architecture, molecular weight, and crosslinking agent. Journal of Polymer Science Part A, 2003, 41, 1296-1305.	2.3	36
198	Fibrillar structure of resorbable microblock copolymers based on 1,5-dioxepan-2-one and ?-caprolactone. Journal of Polymer Science Part A, 2003, 41, 2412-2423.	2.3	29

#	Article	IF	CITATIONS
199	Use of germanium initiators in ring-opening polymerization ofL-lactide. Journal of Polymer Science Part A, 2003, 41, 3074-3082.	2.3	23
200	Well-Organized Phase-Separated Nanostructured Surfaces of Hydrophilic/Hydrophobic ABA Triblock Copolymers. Biomacromolecules, 2003, 4, 1451-1456.	5.4	23
201	Total Luminescence Intensity as a Tool to Classify Degradable Polyethylene Films by Early Degradation Detection and Changes in Activation Energy. Biomacromolecules, 2003, 4, 900-907.	5.4	21
202	New Hemicellulose-Based Hydrogels. ACS Symposium Series, 2003, , 347-359.	0.5	5
203	Migration and Emission of Plasticizer and Its Degradation Products during Thermal Aging of Nitrile Rubber. International Journal of Polymer Analysis and Characterization, 2003, 8, 279-293.	1.9	11
204	Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules, 2003, 4, 1466-1486.	5.4	1,428
205	Silicone Elastomer Surface Functionalized with Primary Amines and Subsequently Coupled with Heparin. Biomacromolecules, 2003, 4, 145-148.	5.4	22
206	Degradable polymers: design, synthesis and testing. Macromolecular Symposia, 2003, 195, 241-246.	0.7	1
207	New Biodegradable Polymers from Renewable Sources – Segmented Copolyesters of Poly(1,3-Propanediol Succinate) and Poly(Ethylene Glycol). Journal of Bioactive and Compatible Polymers, 2002, 17, 209-219.	2.1	14
208	Techniques and Mechanisms of Polymer Degradation. , 2002, , 51-69.		7
209	New Selective Method for Quantification of Organosilanol Groups in Silicone Pre-elastomers. Biomacromolecules, 2002, 3, 850-856.	5.4	3
210	Resorbable and Highly Elastic Block Copolymers from 1,5-Dioxepan-2-one andl-Lactide with Controlled Tensile Properties and Hydrophilicity. Biomacromolecules, 2002, 3, 601-608.	5.4	85
211	Argon Microwave Plasma Treatment and Subsequent Hydrosilylation Grafting as a Way To Obtain Silicone Biomaterials with Well-Defined Surface Structures. Biomacromolecules, 2002, 3, 505-510.	5.4	42
212	Aliphatic Polyesters: Synthesis, Properties and Applications. Advances in Polymer Science, 2002, , 1-40.	0.8	391
213	Controlled Synthesis of Star-Shapedl-Lactide Polymers Using New Spirocyclic Tin Initiators. Biomacromolecules, 2002, 3, 684-690.	5.4	121
214	Polymers from Renewable Resources. Advances in Polymer Science, 2002, , 139-161.	0.8	93
215	Controlled Ring-Opening Polymerization: Polymers with designed Macromolecular Architecture. Advances in Polymer Science, 2002, , 41-65.	0.8	303
216	Ring-Opening Polymerization of Lactones and Lactides with Sn(IV) and Al(III) Initiators. Macromolecules, 2002, 35, 1556-1562.	4.8	88

#	Article	IF	CITATIONS
217	Heterogeneous biodegradation of polycaprolactone – low molecular weight products and surface changes. Macromolecular Chemistry and Physics, 2002, 203, 1357-1363.	2.2	66
218	Controlled destruction of residual crosslinker in a silicone elastomer for drug delivery. Journal of Applied Polymer Science, 2002, 84, 2254-2264.	2.6	3
219	Star-shaped and photocrosslinked poly(1,5-dioxepan-2-one): Synthesis and characterization. Journal of Polymer Science Part A, 2002, 40, 2049-2054.	2.3	26
220	Synthesis andin vitro degradation of poly(N-vinyl-2-pyrrolidone)-based graft copolymers for biomedical applications. Journal of Polymer Science Part A, 2002, 40, 3652-3661.	2.3	26
221	Evaluation of surface modification processes using a ternary XPS diagram. Surface and Interface Analysis, 2002, 33, 541-544.	1.8	3
222	Thermal oxidation of poly(ethylene oxide–propylene oxide–ethylene oxide) triblock copolymer: focus on low molecular weight degradation products. Polymer Degradation and Stability, 2002, 77, 55-66.	5.8	23
223	Mechanism of Ring-Opening Polymerization of 1,5-Dioxepan-2-one and l-Lactide with Stannous 2-Ethylhexanoate. A Theoretical Study. Macromolecules, 2001, 34, 3877-3881.	4.8	164
224	Tailored mechanical properties and degradability of polyesters by controlled molecular architecture. Macromolecular Symposia, 2001, 175, 11-18.	0.7	10
225	Surface modification of high density polyethylene tubes by coating chitosan, chitosan hydrogel and heparin. Polymer Bulletin, 2001, 46, 223-229.	3.3	31
226	New biodegradable polymers from renewable sources: Polyester-carbonates based on 1,3-propylene-co-1,4-cyclohexanedimethylene succinate. Journal of Polymer Science Part A, 2001, 39, 2508-2519.	2.3	54
227	Enhanced rigidity of recycled polypropylene from packaging waste by compounding with talc and high- crystallinity polypropylene. Polymers for Advanced Technologies, 2001, 12, 279-284.	3.2	15
228	A new method for the determination of a hydrosilanization inhibitor applied to measurements during curing of a silicone elastomer. Journal of Applied Polymer Science, 2001, 79, 2349-2353.	2.6	4
229	Improved polyimide/metal adhesion by chemical modification approaches. Journal of Applied Polymer Science, 2001, 82, 1971-1985.	2.6	40
230	New segmented poly(ester-urethane)s from renewable resources. Journal of Polymer Science Part A, 2001, 39, 630-639.	2.3	28
231	Biodegradable Polymers from Renewable Sources. New Hemicellulose-Based Hydrogels. Macromolecular Rapid Communications, 2001, 22, 962-967.	3.9	138
232	l-Lactide Macromonomer Synthesis Initiated by New Cyclic Tin Alkoxides Functionalized for Brushlike Structures. Macromolecules, 2001, 34, 7281-7287.	4.8	74
233	Influence of low molecular weight lactic acid derivatives on degradability of polylactide. Journal of Applied Polymer Science, 2000, 76, 228-239.	2.6	45
234	Morphology engineering of a novel poly(L-lactide)/poly(1,5-dioxepan-2-one) microsphere system for controlled drug delivery. Journal of Polymer Science Part A, 2000, 38, 786-796.	2.3	30

#	Article	IF	CITATIONS
235	Controlled ring-opening polymerization ofL-lactide and 1,5-dioxepan-2-one forming a triblock copolymer. Journal of Polymer Science Part A, 2000, 38, 1774-1784.	2.3	83
236	PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. Journal of Applied Polymer Science, 2000, 78, 2369-2378.	2.6	81
237	New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromolecular Rapid Communications, 2000, 21, 680-684.	3.9	80
238	New ester and lactone end-functionalized N-vinyl-2-pyrrolidinone oligomers. Macromolecular Chemistry and Physics, 2000, 201, 1219-1225.	2.2	18
239	Changes in Composition of Hydrolyzed Poly(butylene adipate- <i>co</i> -caproamide) Characterized by Pyrolysis-GC-MS, ¹ H-NMR and FTIR. International Journal of Polymer Analysis and Characterization, 2000, 5, 415-435.	1.9	5
240	Controlled ring-opening polymerization of lactones and lactides. Macromolecular Symposia, 2000, 157, 39-46.	0.7	22
241	Great Advantages in Using a Natural Rubber Instead of a Synthetic SBR in a Pro-Oxidant System for Degradable LDPE. Biomacromolecules, 2000, 1, 665-673.	5.4	25
242	Dihydroxy-Terminated Poly(l-lactide) Obtained by Controlled Ring-Opening Polymerization:Â Investigation of the Polymerization Mechanism. Macromolecules, 2000, 33, 2862-2869.	4.8	76
243	The influence of processing induced differences in molecular structure on the biological and non-biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate), P(3-HB-co-3-HV). Polymer Degradation and Stability, 1999, 63, 201-211.	5.8	21
244	Effect of abiotic factors on the degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in simulated and natural composting environments. Polymer Degradation and Stability, 1999, 64, 177-183.	5.8	28
245	Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polymer Degradation and Stability, 1999, 63, 127-138.	5.8	190
246	Encapsulation of rotavirus into poly(lactide-co-glycolide) microspheres. Journal of Controlled Release, 1999, 59, 377-389.	9.9	41
247	Copolymerization and polymer blending of trimethylene carbonate and adipic anhydride for tailored drug delivery. Journal of Applied Polymer Science, 1999, 72, 227-239.	2.6	44
248	Structural change and swelling mechanism of pH-sensitive hydrogels based on chitosan andD,L-lactic acid. Journal of Applied Polymer Science, 1999, 74, 3186-3192.	2.6	110
249	Synthesis and characterization of pH-sensitive hydrogels based on chitosan andD,L-lactic acid. Journal of Applied Polymer Science, 1999, 74, 3193-3202.	2.6	134
250	Ring-opening polymerization of 1,5-dioxepan-2-one initiated by a cyclic tin-alkoxide initiator in different solvents. Journal of Polymer Science Part A, 1999, 37, 3407-3417.	2.3	70
251	Dynamics in prediction of life-time of environmental adaptable polymers. Macromolecular Symposia, 1999, 144, 1-5.	0.7	5
252	Title is missing!. Journal of Polymers and the Environment, 1998, 6, 209-221.	5.0	29

#	Article	IF	CITATIONS
253	Title is missing!. Journal of Polymers and the Environment, 1998, 6, 187-195.	5.0	114
254	Trapping of volatile low molecular weight photoproducts in inert and enhanced degradable LDPE. Polymer Degradation and Stability, 1998, 61, 329-342.	5.8	59
255	Effect of processing additives on (bio)degradability of film-blown poly(?-caprolactone). Journal of Applied Polymer Science, 1998, 70, 61-74.	2.6	46
256	Biodegradable polymers and environmental interaction. Polymer Engineering and Science, 1998, 38, 1251-1253.	3.1	135
257	Abiotic and biotic degradation of aliphatic polyesters from "petro―versus "green―resources. Macromolecular Symposia, 1998, 127, 219-225.	0.7	16
258	Ringâ€opening polymerization of degradable polyesters. Macromolecular Symposia, 1998, 130, 367-378.	0.7	7
259	Recycling of cheap packaging waste versus expensive engineering materials. Macromolecular Symposia, 1998, 135, 1-5.	0.7	1
260	Comparison Between Physical Blending and Copolymerization of Poly(Trimethylene Carbonate) and Poly(Adipic Anhydride) with Special Regard to Compatibility, Morphology and Degradation. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1457-1482.	2.2	19
261	Environmental interaction of polymersâ€natural metabolites as opposed to the degradation products of synthetic polymers. Macromolecular Symposia, 1997, 118, 733-737.	0.7	Ο
262	Dicarboxylic Acids and Ketoacids Formed in Degradable Polyethylenes by Zip Depolymerization through a Cyclic Transition State. Macromolecules, 1997, 30, 7721-7728.	4.8	76
263	Influence of processing parameters on the molecular weight and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 1997, 57, 331-338.	5.8	33
264	The mode of action of corn starch and a pro-oxidant system in LDPE: influence of thermo-oxidation and UV-irradiation on the molecular weight changes. Polymer Degradation and Stability, 1997, 55, 237-245.	5.8	85
265	Molecular weight determination in degraded oxidizable and hydrolyzable polymers giving deviation from accurate using calibration and the Mark-Houwink-Sakaruda (MHS) equation. Polymer Degradation and Stability, 1997, 57, 15-23.	5.8	9
266	Synthesis of degradable crosslinked polymers based on 1,5-dioxepan-2-one and crosslinker of bis-?-caprolactone type. Journal of Polymer Science Part A, 1997, 35, 1635-1649.	2.3	55
267	Thermal and Mechanical Properties of Polyurethanes Derived from Mono- and Disaccharides. Polymer International, 1997, 42, 1-8.	3.1	48
268	Susceptibility of starch-filled and starch-based LDPE to oxygen in water and air. Journal of Applied Polymer Science, 1997, 66, 959-967.	2.6	44
269	Chromatographic fingerprinting as a means to predict degradation mechanisms. Journal of Polymers and the Environment, 1996, 4, 51-53.	0.6	6
270	Short methylene segment crosslinks in degradable aliphatic polyanhydride: Network formation, characterization, and degradation. Journal of Polymer Science Part A, 1996, 34, 1395-1405.	2.3	21

#	Article	IF	CITATIONS
271	Preparation and characterisation of poly(adipic anhydride) microspheres for ocular drug delivery. Journal of Applied Polymer Science, 1996, 62, 695-705.	2.6	42
272	Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polymer Degradation and Stability, 1996, 52, 283-291.	5.8	224
273	Bioactive heparin surfaces from derivatization of polyacrylamide-grafted LLDPE. Biomaterials, 1996, 17, 1881-1889.	11.4	34
274	Solid-phase extraction and subsequent gas chromatography-mass spectrometry analysis for identification of complex mixtures of degradation products in starch-based polymers. Journal of Chromatography A, 1996, 741, 251-263.	3.7	43
275	Benght RÃ¥nby Honored. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1337-1339.	2.2	0
276	Preface for the International Symposium on Macromolecular Archtiecture. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1331-1333.	2.2	0
277	Macromolecular Architecture-Nature as a Model for Degradable Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1565-1570.	2.2	18
278	New tools for analysing degradation. Macromolecular Symposia, 1995, 98, 797-801.	0.7	5
279	Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride). Journal of Applied Polymer Science, 1995, 57, 87-103.	2.6	179
280	Solid-phase extraction and gas chromatographic-mass spectrometric identification of degradation products from enhanced environmentally degradable polyethylene. Journal of Chromatography A, 1995, 690, 207-217.	3.7	33
281	Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer, 1995, 36, 3075-3083.	3.8	187
282	Solid waste treatment within the framework of life-cycle assessment. Journal of Cleaner Production, 1995, 3, 189-199.	9.3	87
283	Synthesis and characterization of high molecular weight poly(1,5-dioxepan-2-one) with narrow molecular weight distribution. Polymer, 1995, 36, 3753-3759.	3.8	27
284	Degradation Products in Degradable Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 599-605.	2.2	9
285	Copolymers of 1,5-dioxepan-2-one and L- or D,L-dilactide: In vivo degradation behaviour. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 411-423.	3.5	13
286	Synthesis and Characterization of Poly(1,5-Dioxepan-2-one- <i>co</i> -L-Lactic Acid) and Poly(1,5-Dioxepan-2-one- <i>co</i> -D,L-Lactic Acid). Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 41-59.	2.2	48
287	Recent Advances in Ring-Opening Polymerization of Lactones and Related Compounds. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1995, 35, 379-418.	2.2	206
288	Synthesis of copolymers of 1,3-dioxan-2-one and oxepan-2-one using coordination catalysts. Journal of Polymer Science Part A, 1994, 32, 265-279.	2.3	91

#	Article	IF	CITATIONS
289	Degradation of enhanced environmentally degradable polyethylene in biological aqueous media: Mechanisms during the first stages. Journal of Applied Polymer Science, 1994, 51, 1097-1105.	2.6	55
290	Identification by headspace gas chromatography-mass spectrometry of in vitro degradation products of homo- and copolymers of I- and d,I-lactide and 1,5-dioxepan-2-one. Journal of Chromatography A, 1994, 688, 251-259.	3.7	45
291	Gas chromatographic, liquid chromatographic and gas chromatographic-mass spectrometric identification of degradation products in accelerated aged microbial polyhydroxyalkanoates. Journal of Chromatography A, 1994, 669, 97-102.	3.7	21
292	Environment-adaptable polymers. Polymer Degradation and Stability, 1993, 41, 345-349.	5.8	21
293	Aspects of biodeterioration of inert and degradable polymers. International Biodeterioration and Biodegradation, 1993, 31, 161-170.	3.9	51
294	Increased biodegradation of a low-density polyethylene (LDPE) matrix in starch-filled LDPE materials. Journal of Polymers and the Environment, 1993, 1, 241-245.	0.6	26
295	Polymerization and Degradation of 1,5-Dioxepan-2-One. Journal of Macromolecular Science - Pure and Applied Chemistry, 1993, 30, 919-931.	2.2	33
296	Degradable Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1993, 30, 757-765.	2.2	58
297	Synthesis of degradable copolymers by ringâ€opening polymerization. Makromolekulare Chemie Macromolecular Symposia, 1993, 73, 127-135.	0.6	11
298	Copolymers of 1.5â€dioxepanâ€2â€one and L―or D,Lâ€dilactide ―synthesis and characterization. Makromolekulare Chemie Macromolecular Symposia, 1992, 53, 221-231.	0.6	21
299	Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polymer Degradation and Stability, 1992, 37, 163-171.	5.8	107
300	Polymerization of Oxepan-2,7-dione in Solution and Synthesis of Block Copolymers of Oxepan-2,7-dione and 2-Oxepanone. Journal of Macromolecular Science Part A, Chemistry, 1991, 28, 15-29.	0.3	36
301	Degradable polyethyleneâ€starch complex. Makromolekulare Chemie Macromolecular Symposia, 1991, 48-49, 395-402.	0.6	16
302	Hydrolytic degradation of nonoriented poly(β-propiolactone). Journal of Applied Polymer Science, 1991, 42, 2365-2370.	2.6	35
303	The biodegradation of a biopolymeric additive in building materials. Materiaux Et Constructions, 1990, 23, 352-357.	0.3	12
304	Hydrolytic degradation of melt-extruded fibers from poly(β-propiolactone). Journal of Applied Polymer Science, 1990, 39, 591-601.	2.6	30
305	Melt Polymerization of Adipic Anhydride (Oxepane-2,7-Dione). Journal of Macromolecular Science Part A, Chemistry, 1990, 27, 397-412.	0.3	10
306	Polyethylene Degradation and Degradation Products. ACS Symposium Series, 1990, , 60-64.	0.5	11

#	Article	IF	CITATIONS
307	A facile method for the study of slow physical and chemical processes in polymeric systems. Journal of Applied Polymer Science, 1989, 37, 1221-1231.	2.6	7
308	Biodegradable Polymers. , 1989, , 285-297.		2
309	The three stages in degradation of polymers—polyethylene as a model substance. Journal of Applied Polymer Science, 1988, 35, 1289-1302.	2.6	172
310	Identification and characterization of alkali-tolerant clostridia isolated from biodeteriorated casein-containing building materials. Applied Microbiology and Biotechnology, 1988, 28, 305.	3.6	10
311	Biodegradation of polyethylene and the influence of surfactants. Polymer Degradation and Stability, 1988, 21, 237-250.	5.8	71
312	Detection by high-performance liquid chromatography of polyamines formed by clostridial putrefaction of caseins. Journal of Chromatography A, 1988, 442, 267-277.	3.7	25
313	Degradable Polymers. IV. Degradation of Aliphatic Thermoplastic Block Copolyesters. Journal of Macromolecular Science Part A, Chemistry, 1988, 25, 467-498.	0.3	11
314	Synthesis of Poly(Adipic Anhydride) by Use of Ketene. Journal of Macromolecular Science Part A, Chemistry, 1988, 25, 247-258.	0.3	27
315	Degradable Polymers. III. Synthesis and Characterization of Aliphatic Thermoplastic Block Copolyesters. Journal of Macromolecular Science - Pure and Applied Chemistry, 1987, 24, 977-990.	2.2	15
316	The mechanism of biodegradation of polyethylene. Polymer Degradation and Stability, 1987, 18, 73-87.	5.8	511
317	Coldâ€ŧolerant (psychrotrophic) moulds and blue stain fungi from softwood in Sweden. Growth rates in relation to pH and temperature. Nordic Journal of Botany, 1987, 7, 97-106.	0.5	9
318	Degradable Polymers. I. Synthesis, Characterization, and Long-Term in Vitro Degradation of a ¹⁴ C-Labeled Aliphatic Polyester. Journal of Macromolecular Science Part A, Chemistry, 1986, 23, 393-409.	0.3	44
319	Degradable Polymers. II. Synthesis, Characterization, and Degradation of an Aliphatic Thermoplastic Block Copolyester. Journal of Macromolecular Science Part A, Chemistry, 1986, 23, 411-422.	0.3	40
320	Functional polymers. XXVII: 2[2-hydroxy-4-acryloxy(methacryloxy)phenyl]2H-benzotriazole: Monomers, polymers, and copolymers. Monatshefte Für Chemie, 1984, 115, 853-868.	1.8	32
321	Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. Journal of Applied Polymer Science, 1978, 22, 3419-3433.	2.6	138
322	Biodegradation of synthetic polymers. III. The liberation of 14CO2 by molds like fusarium redolens from 14C labeled pulverized high-density polyethylene. Journal of Applied Polymer Science, 1978, 22, 3435-3447.	2.6	51