Alexander E Ershov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771343/publications.pdf Version: 2024-02-01

ALEXANDER F FRSHOV

#	Article	IF	CITATIONS
1	Thermal degradation of optical resonances in plasmonic nanoparticles. Nanoscale, 2022, 14, 433-447.	2.8	6
2	Part I. Nanobubbles in pulsed laser fields for anticancer therapy: in search of adequate models and simulation approaches. Journal Physics D: Applied Physics, 2022, 55, 175401.	1.3	2
3	Part II. Nanobubbles around plasmonic nanoparticles in terms of modern simulation modeling: what makes them kill the malignant cells?. Journal Physics D: Applied Physics, 2022, 55, 175402.	1.3	2
4	Ring of bound states in the continuum in the reciprocal space of a monolayer of high-contrast dielectric spheres. Physical Review B, 2022, 105, .	1.1	4
5	Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces. Photonics, 2021, 8, 109.	0.9	10
6	Plasmonic Enhancement of Local Fields in Ultrafine Metal Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 13900-13908.	1.5	6
7	Substrate-mediated lattice Kerker effect in Al metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C78.	0.9	5
8	Plasmonic lattice Kerker effect in ultraviolet-visible spectral range. Physical Review B, 2021, 103, .	1.1	16
9	Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates. Chinese Physics B, 2020, 29, 037802.	0.7	1
10	Collective resonances in hybrid photonic-plasmonic nanostructures. Journal of Physics: Conference Series, 2020, 1461, 012046.	0.3	0
11	Mode coupling in arrays of Al nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248, 106961.	1.1	10
12	Collective Lattice Resonances in All-Dielectric Nanostructures under Oblique Incidence. Photonics, 2020, 7, 24.	0.9	19
13	On the possibility of through passage of asteroid bodies across the Earth's atmosphere. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1344-1351.	1.6	9
14	Effect of the surface shape of a large space body on its fragmentation in a planetary atmosphere. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1352-1360.	1.6	1
15	Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths. Optics Express, 2020, 28, 1426.	1.7	18
16	Super-efficient laser hyperthermia of malignant cells with core-shell nanoparticles based on alternative plasmonic materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106599.	1.1	10
17	Engineering mode hybridization in regular arrays of plasmonic nanoparticles embedded in 1D photonic crystal. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 303-308.	1.1	22
18	Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size. Optics Letters, 2019, 44, 5743.	1.7	47

Alexander E Ershov

#	Article	IF	CITATIONS
19	Titanium nitride nanoparticles as an alternative platform for plasmonic waveguides in the visible and telecommunication wavelength ranges. Photonics and Nanostructures - Fundamentals and Applications, 2018, 30, 50-56.	1.0	9
20	Temperature dependent elastic repulsion of colloidal nanoparticles with a polymer adsorption layer. Colloid and Polymer Science, 2018, 296, 1689-1697.	1.0	3
21	Thermal limiting effects in optical plasmonic waveguides. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191, 1-6.	1.1	5
22	Surface plasmon resonances in liquid metal nanoparticles. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	12
23	Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths. Applied Physics Letters, 2017, 111, .	1.5	37
24	Titanium nitride as light trapping plasmonic material in silicon solar cell. Optical Materials, 2017, 72, 397-402.	1.7	38
25	Method of calculating the phase composition of SiC–Si–C materials obtained by silicon infiltration of carbon matrices. Technical Physics, 2017, 62, 903-910.	0.2	5
26	Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]. Optical Materials Express, 2017, 7, 555.	1.6	16
27	Thermal effects in systems of colloidal plasmonic nanoparticles in high-intensity pulsed laser fields [Invited]: publisherမs note. Optical Materials Express, 2017, 7, 799.	1.6	2
28	Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state. Optics Express, 2016, 24, 26851.	1.7	18
29	Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields. Chinese Physics B, 2016, 25, 117806.	0.7	2
30	Optimization of photothermal methods for laser hyperthermia of malignant cells using bioconjugates of gold nanoparticles. Colloid Journal, 2016, 78, 435-442.	0.5	7
31	Plasmonic Nanoparticle Aggregates in High-Intensity Laser Fields: Effect of Pulse Duration. Plasmonics, 2016, 11, 403-410.	1.8	5
32	Effect of local environment in resonant domains of polydisperse plasmonic nanoparticle aggregates on optodynamic processes in pulsed laser fields. Chinese Physics B, 2015, 24, 047804.	0.7	8
33	Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles. Applied Physics B: Lasers and Optics, 2014, 115, 547-560.	1.1	16
34	Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates. Physical Review B, 2012, 85, .	1.1	20
35	General principles in formation of monolayer colloidal crystals using the moving meniscus method. Colloid Journal, 2011, 73, 788-800.	0.5	3
36	Evolution of extinction spectra of monolayer plasmon-resonant colloidal crystals in the process of their synthesis by the moving meniscus method. Colloid Journal, 2011, 73, 801-806.	0.5	0

#	Article	IF	CITATIONS
37	Conditions for the synthesis of colloidal crystals by the method of a mobile meniscus. Doklady Physics, 2010, 55, 374-379.	0.2	0