
J S Ardenghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlations in twisted double-layer graphene with virtual photons in a microcavity. Journal of Physics Condensed Matter, 2022, 34, 115602.	1.8	1
2	How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation. Foundations of Physics, 2022, 52, .	1.3	1
3	Cavity-mediated drag in double-layer graphene. Journal of Physics Condensed Matter, 2022, 34, 395602.	1.8	2
4	Effect of an external electric field on local magnetic moments in silicene. Journal of Magnetism and Magnetic Materials, 2021, 524, 167598.	2.3	9
5	Quantum credit loans. Physica A: Statistical Mechanics and Its Applications, 2021, 567, 125656.	2.6	1
6	Fermi velocity reduction in graphene due to enhanced vacuum fluctuations. Journal of Physics Condensed Matter, 2021, 33, 485502.	1.8	2
7	A general formulation for the magnetic oscillations in two dimensional systems. European Physical Journal B, 2020, 93, 1.	1.5	2
8	Effective interactions in twisted double-layer graphene in a microcavity. Journal of Physics Condensed Matter, 2020, 32, 345603.	1.8	3
9	Heat capacity in doped graphene under magnetic fields: the role of spin splitting. Journal of Physics Condensed Matter, 2020, 32, 455402.	1.8	Ο
10	Temperature effect on the magnetic oscillations in 2D materials. Journal of Physics Condensed Matter, 2019, 31, 285804.	1.8	2
11	Zero energy mode for an electron in graphene in a perpendicular magnetic field with constant asymptotics. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 225-227.	2.7	1
12	Formation of localized magnetic states in silicene in an external electric field. Superlattices and Microstructures, 2019, 130, 285-296.	3.1	2
13	Magnetic oscillations in silicene. Journal of Magnetism and Magnetic Materials, 2018, 454, 131-138.	2.3	9
14	Formation of localized magnetic states in graphene in hollow-site adsorbed adatoms. Superlattices and Microstructures, 2018, 113, 291-300.	3.1	7
15	Influence of temperature on the magnetic oscillations in graphene with spin splitting: a new approach. Journal of Physics Condensed Matter, 2018, 30, 275803.	1.8	4
16	Entanglement entropy between virtual and real excitations in quantum electrodynamics. International Journal of Modern Physics A, 2018, 33, 1850081.	1.5	2
17	Entanglement harvesting in double-layer graphene by vacuum fluctuations in a microcavity. Physical Review D, 2018, 98, .	4.7	15
18	Impurity effects in the magnetic oscillations on doped graphene with Zeeman splitting. Physica B: Condensed Matter, 2017, 518, 39-46.	2.7	5

J S Ardenghi

#	Article	IF	CITATIONS
19	Analytic solution for gauged Dirac-Weyl equation in (2 + 1)-dimensions. Europhysics Letters, 2017, 118, 21001.	2.0	1
20	Ground state magnetization of conduction electrons in graphene with Zeeman effect. Journal of Magnetism and Magnetic Materials, 2017, 429, 294-298.	2.3	11
21	Fractional statistical potential in graphene. Physica B: Condensed Matter, 2017, 508, 51-55.	2.7	1
22	Magnetization in pristine graphene with Zeeman splitting and variable spin-orbit coupling. Superlattices and Microstructures, 2017, 101, 537-546.	3.1	7
23	Approximate solutions to the quantum problem of two opposite charges in a constant magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1817-1823.	2.1	4
24	Electronic properties of Cantor random box distribution of impurities in graphene. Superlattices and Microstructures, 2016, 89, 398-408.	3.1	3
25	Entanglement entropy between real and virtual particles in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msup> < mml:mrow> < mml:mi>ï• < /mml:mi> < /mml:mrow> < mml:mrow> < mml:r field theory. Physical Review D, 2015, 91	nn ^{4;7} 4 <td>nl:mn></td>	nl:mn>
26	Valley properties of doped graphene in a magnetic field. European Physical Journal B, 2015, 88, 1.	1.5	10
27	Electronic structure and magnetism on FeSiAl alloy: A DFT study. Journal of Magnetism and Magnetic Materials, 2015, 389, 73-76.	2.3	11
28	Electronic structure and soft magnetic properties of Se/FeSiAl (110) films. Applied Surface Science, 2015, 354, 401-407.	6.1	8
29	Statistical repulsion/attraction of electrons in graphene in a magnetic field. Physica B: Condensed Matter, 2014, 433, 28-36.	2.7	7

J S Ardenghi

#	Article	IF	CITATIONS
37	Landau level transitions in doped graphene in a time dependent magnetic field. Physica B: Condensed Matter, 2013, 427, 97-105.	2.7	11
38	Modal Interpretations and Consecutive Measurements. , 2013, , 207-217.		5
39	Renormalization: The observable-state model. Physical Review D, 2012, 85, .	4.7	4
40	Renormalization: The observable-state model. II. Physical Review D, 2012, 85, .	4.7	3
41	Compatibility between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics. Philosophy of Science, 2011, 78, 1024-1036.	1.0	10
42	Modal-Hamiltonian Interpretation of Quantum Mechanics and Casimir Operators: The Road Toward Quantum Field Theory. International Journal of Theoretical Physics, 2011, 50, 774-791.	1.2	11
43	The Modal-Hamiltonian Interpretation of Quantum Mechanics as a Kind of "Atomic―Interpretation. Research Letters in Physics, 2011, 2011, 1-10.	0.2	6
44	FOUNDATIONS OF QUANTUM MECHANICS: DECOHERENCE AND INTERPRETATION. International Journal of Modern Physics D, 2011, 20, 861-875.	2.1	6
45	Growing Classical and Quantum Entropies in the Early Universe. International Journal of Theoretical Physics, 2010, 49, 171-186.	1.2	0
46	The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 2010, 41, 93-103.	1.4	28
47	The nonrelativistic limit of (central-extended) Poincaré group and some consequences for quantum actualization. Journal of Mathematical Physics, 2009, 50, 103526.	1.1	4
48	The hydrogen interaction in an FCC FePd alloy with a vacancy. Physica Scripta, 2009, 79, 045702.	2.5	4
49	Quantum Mechanics: Modal Interpretation andÂGalilean Transformations. Foundations of Physics, 2009, 39, 1023-1045.	1.3	25