
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771104/publications.pdf Version: 2024-02-01

ΚΛΙΙΕΙΠΠΤΙ

#	Article	IF	CITATIONS
1	<scp>U.S.</scp> and Finnish high school science engagement during the COVIDâ€19 pandemic. International Journal of Psychology, 2022, 57, 73-86.	2.8	10
2	Quality over frequency in using digital technology: Measuring the experienced functional use. Computers and Education, 2022, 176, 104361.	8.3	9
3	Students' Emotions Related to Thermal Camera Activities in Primary Science Lessons. Innovations in Science Education and Technology, 2022, , 79-93.	0.3	0
4	Clarifying the Relation Between Epistemic Emotions and Learning by Using Experience Sampling Method and Pre-posttest Design. Frontiers in Education, 2022, 7, .	2.1	7
5	Luonnontieteen opetuksen ja opiskelun työtapojen yhteys lukiolaisten tilannekohtaiseen sitoutumiseen. , 2022, 53, 245-258.		1
6	Elementary school students' motivational profiles across Finnish language, mathematics and science: Longitudinal trajectories, gender differences and STEM aspirations. Contemporary Educational Psychology, 2021, 64, 101927.	2.9	16
7	Instructional Activities Predicting Epistemic Emotions in Finnish Upper Secondary School Science Lessons: Combining Experience Sampling and Video Observations. Contributions From Science Education Research, 2021, , 317-329.	0.5	4
8	A Teacher–Researcher Partnership for Professional Learning: Co-Designing Project-Based Learning Units to Increase Student Engagement in Science Classes. Journal of Science Teacher Education, 2021, 32, 625-641.	2.5	31
9	Promoting Coherent Science Instruction through Coherent Science Teacher Education: A Model Framework for Program Design. Journal of Science Teacher Education, 2021, 32, 911-933.	2.5	7
10	Primary Students' Experiences of Remote Learning during COVID-19 School Closures: A Case Study of Finland. Education Sciences, 2021, 11, 560.	2.6	10
11	Upper secondary students' situational interest in physics learning in Finland and Chile. International Journal of Science Education, 2021, 43, 2577-2596.	1.9	7
12	Finland, A Package Deal: Disciplinary Climate in Science Classes, Science Dispositions and Science Literacy. Sustainability, 2021, 13, 13857.	3.2	6
13	How fieldwork-oriented biology teachers establish formal outdoor education practices. Journal of Biological Education, 2020, 54, 115-128.	1.5	15
14	Maker-Centered Project-Based Learning in Inclusive Classes: Supporting Students' Active Participation with Teacher-Directed Reflective Discussions. International Journal of Science and Mathematics Education, 2020, 18, 691-712.	2.5	28
15	"How stupid can a person be?―– Students coping with authoritative dimensions of science lessons. Learning, Culture and Social Interaction, 2020, 24, 100367.	1.8	6
16	Interest in Dialogic and Non-Dialogic Teacher Talk Situations in Middle School Science Classroom. International Journal of Science and Mathematics Education, 2020, 18, 1531-1546.	2.5	15
17	High school students' situational engagement associated with scientific practices in designed science learning situations. Science Education, 2020, 104, 667-692.	3.0	49
18	The resurgence of everyday experiences in school science learning activities. Cultural Studies of Science Education, 2020, 15, 1019-1045.	1.3	9

#	Article	IF	CITATIONS
19	Ainedidaktiikan moninaisuus ja erityisyys. Ainedidaktiikka, 2020, 4, 1-2.	0.1	Ο
20	EtÃ ¤ oulu on digitaalisuuden interventio. Ainedidaktiikka, 2020, 4, 1-1.	0.1	0
21	The Relations of Science Task Values, Self-Concept of Ability, and STEM Aspirations Among Finnish Students From First to Second Grade. Frontiers in Psychology, 2019, 10, 1449.	2.1	19
22	Science classroom activities and student situational engagement. International Journal of Science Education, 2019, 41, 316-329.	1.9	24
23	Ainedidaktiikka moninaistuu. Ainedidaktiikka, 2019, 3, 1-1.	0.1	Ο
24	Lukion yleissivistys rakentuu oppiaineissa. Ainedidaktiikka, 2019, 3, 1-1.	0.1	0
25	Transferring a Teaching Learning Sequence Between Two Different Educational Contexts: the Case of Greece and Finland. International Journal of Science and Mathematics Education, 2018, 16, 443-463.	2.5	9
26	Connection between academic emotions in situ and retention in the physics track: applying experience sampling method. International Journal of STEM Education, 2018, 5, 25.	5.0	8
27	Duration of On-Campus Academic Engagements of Student Teachers in Finland and Norway. Education Inquiry, 2017, 8, 89-103.	2.9	2
28	Investigating optimal learning moments in U.S. and finnish science classes. Journal of Research in Science Teaching, 2016, 53, 400-421.	3.3	79
29	How teaching practices are connected to student intention to enrol in upper secondary school physics courses. Research in Science and Technological Education, 2016, 34, 204-218.	2.5	7
30	Accommodating to <scp>E</scp> nglishâ€medium instruction in teacher education in <scp>F</scp> inland. International Journal of Applied Linguistics, 2016, 26, 291-310.	0.9	18
31	Pragmatic Design-Based Research – Designing as a Shared Activity of Teachers and Researches. , 2016, , 35-46.		5
32	Science at Finnish Compulsory School. , 2016, , 125-144.		2
33	Developing a collaborative model in teacher education – An overview of a teacher professional development project. Lumat, 2016, 4, 67-86.	0.5	7
34	Design and Development of Teaching-Learning Sequence (TLS) Materials Around Us: Description of an Iterative Process. , 2016, , 201-231.		1
35	Investigating Situational Interest in Primary Science Lessons. International Journal of Science Education, 2015, 37, 3015-3037.	1.9	16
36	Coulombic interaction in Finnish middle school chemistry: a systemic perspective on students' conceptual structure of chemical bonding. Chemistry Education Research and Practice, 2015, 16, 901-917.	2.5	11

#	Article	IF	CITATIONS
37	Learning to apply models of materials while explaining their properties. Research in Science and Technological Education, 2014, 32, 340-351.	2.5	5
38	The Lifeworld Earth and a Modelled Earth. Science and Education, 2014, 23, 1663-1680.	2.7	1
39	The Innovative School as an Environment for the Design of Educational Innovations. , 2014, , 99-113.		14
40	Promoting Students' Interest and Motivation Towards Science Learning: the Role of Personal Needs and Motivation Orientations. Research in Science Education, 2013, 43, 2517-2539.	2.3	26
41	TEACHER'S REFLECTION OF INQUIRY TEACHING IN FINLAND BEFORE AND DURING AN IN-SERVICE PROGRAM: EXAMINATION BY A PROGRESS MODEL OF COLLABORATIVE REFLECTION. International Journal of Science and Mathematics Education, 2013, 11, 359-383.	2.5	12
42	Integrating geography with physics and visual arts: Analysis of student essays. Norsk Geografisk Tidsskrift, 2013, 67, 172-178.	0.7	9
43	An Analysis of Science Textbooks for Grade 6: The Electric Circuit Lesson. Eurasia Journal of Mathematics, Science and Technology Education, 2013, 9, .	1.3	9
44	Primary school teachers' interviews regarding pedagogical content knowledge (PCK) and general pedagogical knowledge (GPK). European Journal of Science and Mathematics Education, 2013, 1, 84-105.	1.1	4
45	Science at Finnish Compulsory School. , 2012, , 131-147.		1
46	Design-Based Research in Science Education: One Step Towards Methodology. Nordic Studies in Science Education, 2012, 2, 54-68.	0.2	34
47	Pupil interest in physics: A survey in Finland. Nordic Studies in Science Education, 2012, 1, 72-85.	0.2	46
48	Secondary school students' interests, attitudes and values concerning school science related to environmental issues in Finland. Environmental Education Research, 2011, 17, 167-186.	2.9	71
49	Questions asked by primary student teachers about observations of a science demonstration. European Journal of Teacher Education, 2011, 34, 347-361.	3.7	19
50	SCIENCE TEACHING METHODS PREFERRED BY GRADE 9 STUDENTS IN FINLAND. International Journal of Science and Mathematics Education, 2010, 8, 611-632.	2.5	39
51	Enhancing Scientific Literacy through the Industry Site Visit. , 2010, , 225-239.		4
52	Adoption of ICT in Science Education: a Case Study of Communication Channels in A Teachers' Professional Development Project. Eurasia Journal of Mathematics, Science and Technology Education, 2009, 5, .	1.3	16
53	A professional development project for improving the use of information and communication technologies in science teaching. Technology, Pedagogy and Education, 2006, 15, 159-174.	5.4	28
54	Strategyâ€based development of teacher educators' ICT competence through a coâ€operative staff development project. European Journal of Teacher Education, 2006, 29, 241-265.	3.7	23

#	Article	IF	CITATIONS
55	Students' interest in biology and their out-of-school experiences. Journal of Biological Education, 2006, 40, 124-129.	1.5	126
56	Web-based interaction of unqualified primary teachers as off-campus students. International Journal of Web Based Communities, 2006, 2, 58.	0.3	1
57	Issues on School E-Laboratories in Science Teaching. , 2004, , 43-58.		Ο
58	Designing a userâ€friendly microcomputerâ€based laboratory package through the factor analysis of teacher evaluations. International Journal of Science Education, 2003, 25, 1471-1487.	1.9	23
59	Phenomenographical Approach to Design for a Hypertext Teacher's Guide to MBL. , 2003, , 333-341.		2