Zhengquan Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1771068/publications.pdf

Version: 2024-02-01

43 papers 1,968 citations

257450 24 h-index 42 g-index

48 all docs 48 docs citations

48 times ranked

3033 citing authors

#	Article	IF	CITATIONS
1	Bclaf1 regulates câ€FLIP expression and protects cells from TNFâ€induced apoptosis and tissue injury. EMBO Reports, 2022, 23, e52702.	4.5	35
2	Nfatc1 ⁺ colonic stem cells contribute to regeneration upon colitis. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 734-740.	2.8	2
3	CITEMOXMBD: A flexible single-cell multimodal omics analysis framework to reveal the heterogeneity of immune cells. RNA Biology, 2022, 19, 290-304.	3.1	10
4	Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin–Igf1 axis. Cell Research, 2022, 32, 670-686.	12.0	14
5	Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Developmental Cell, 2022, 57, 1758-1775.e7.	7.0	25
6	<i>Lactobacillus paracasei</i> L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway. Food and Function, 2021, 12, 10700-10713.	4.6	15
7	MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways. Theranostics, 2021, 11, 3607-3623.	10.0	16
8	Msi1 promotes breast cancer metastasis by regulating invadopodia-mediated extracellular matrix degradation via the Timp3–Mmp9 pathway. Oncogene, 2021, 40, 4832-4845.	5.9	16
9	Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Frontiers in Cell and Developmental Biology, 2021, 9, 691050.	3.7	5
10	miR-22 promotes stem cell traits via activating Wnt/ \hat{l}^2 -catenin signaling in cutaneous squamous cell carcinoma. Oncogene, 2021, 40, 5799-5813.	5.9	21
11	Nfatc1's Role in Mammary Epithelial Morphogenesis and Basal Stem/progenitor Cell Self-renewal. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 357-365.	2.7	1
12	Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death and Differentiation, 2020, 27, 949-965.	11.2	17
13	Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers. Nano Letters, 2020, 20, 1352-1361.	9.1	124
14	Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Reports, 2020, 32, 107952.	6.4	37
15	Arachidonic Acid Promotes Intestinal Regeneration by Activating WNT Signaling. Stem Cell Reports, 2020, 15, 374-388.	4.8	28
16	Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Communications Biology, 2020, 3, 611.	4.4	15
17	PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/ \hat{I}^2 -catenin signaling and homologous recombination. Theranostics, 2020, 10, 5322-5340.	10.0	32
18	Mucoadhesive-to-penetrating controllable peptosomes-in-microspheres co-loaded with anti-miR-31 oligonucleotide and Curcumin for targeted colorectal cancer therapy. Theranostics, 2020, 10, 3594-3611.	10.0	40

#	Article	IF	Citations
19	Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. EMBO Journal, 2020, 39, e103255.	7.8	34
20	TCF-1 deficiency influences the composition of intestinal microbiota and enhances susceptibility to colonic inflammation. Protein and Cell, 2020, 11, 380-386.	11.0	7
21	Corncob cellulose nanosphere as an eco-friendly detergent. Nature Sustainability, 2020, 3, 448-458.	23.7	56
22	Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 2020, 69, 2131-2142.	12.1	232
23	The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Research, 2020, 30, 854-872.	12.0	17
24	CD146 Regulates Growth Factor-Induced mTORC2 Activity Independent of the PI3K and mTORC1 Pathways. Cell Reports, 2019, 29, 1311-1322.e5.	6.4	16
25	Gut microbiota from end-stage renal disease patients disrupt gut barrier function by excessive production of phenol. Journal of Genetics and Genomics, 2019, 46, 409-412.	3.9	6
26	Overexpression of miR-29 Leads to Myopathy that Resemble Pathology of Ullrich Congenital Muscular Dystrophy. Cells, 2019, 8, 459.	4.1	14
27	MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology, 2019, 156, 2281-2296.e6.	1.3	140
28	<p>Poor Prognosis With Coexistence Of EGFR T790M Mutation And Common EGFR-Activating Mutation In Non- Small Cell Lung Cancer</p> . Cancer Management and Research, 2019, Volume 11, 9621-9630.	1.9	6
29	miR-29a/b1 Inhibits Hair Follicle Stem Cell Lineage Progression by Spatiotemporally Suppressing WNT and BMP Signaling. Cell Reports, 2019, 29, 2489-2504.e4.	6.4	36
30	Calorie Restriction Governs Intestinal Epithelial Regeneration through Cell-Autonomous Regulation of mTORC1 in Reserve Stem Cells. Stem Cell Reports, 2018, 10, 703-711.	4.8	67
31	Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases. Journal of Dairy Science, 2018, 101, 2842-2850.	3.4	18
32	MiR-31 Mediates Inflammatory Signaling to Promote Re-Epithelialization during Skin Wound Healing. Journal of Investigative Dermatology, 2018, 138, 2253-2263.	0.7	78
33	Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nature Communications, 2018, 9, 5129.	12.8	64
34	Msi2 Maintains Quiescent State of Hair Follicle Stem Cells by Directly Repressing the Hh Signaling Pathway. Journal of Investigative Dermatology, 2017, 137, 1015-1024.	0.7	36
35	MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nature Communications, 2017, 8, 1036.	12.8	143
36	Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis. ELife, $2017, 6, .$	6.0	54

ZHENGQUAN YU

#	Article	IF	CITATIONS
37	A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. ELife, $2017, 6, .$	6.0	57
38	<i>Numb</i> and <i>Numbl</i> act to determine mammary myoepithelial cell fate, maintain epithelial identity, and support lactogenesis. FASEB Journal, 2016, 30, 3474-3488.	0.5	26
39	Msi RNA-binding proteins control reserve intestinal stem cell quiescence. Journal of Cell Biology, 2016, 215, 401-413.	5.2	60
40	The Msi Family of RNA-Binding Proteins Function Redundantly as Intestinal Oncoproteins. Cell Reports, 2015, 13, 2440-2455.	6.4	88
41	Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22. PLoS Genetics, 2015, 11, e1005253.	3.5	54
42	Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nature Communications, 2015, 6, 6517.	12.8	110
43	Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. ELife, 2014, 3, e03915.	6.0	88