Pavel Strop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1770758/publications.pdf

Version: 2024-02-01

516215 476904 1,751 28 16 29 h-index citations g-index papers 29 29 29 1928 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Humanization of a strategic CD3 epitope enables evaluation of clinical T-cell engagers in a fully immunocompetent in vivo model. Scientific Reports, 2022, 12, 3530.	1.6	5
2	Impact of Drug Conjugation on Thermal and Metabolic Stabilities of Aglycosylated and <i>N</i> -Glycosylated Antibodies. Bioconjugate Chemistry, 2022, 33, 576-585.	1.8	5
3	Cancer Immunotherapy and the Nectin Family. Annual Review of Cancer Biology, 2021, 5, 203-219.	2.3	14
4	Structures of mouse and human GITR–GITRL complexes reveal unique TNF superfamily interactions. Nature Communications, 2021, 12, 1378.	5.8	10
5	Automated and Faster Affinity Capture Method for Biotransformation Assessment of Site-Specific Antibody Drug Conjugates. Analytical Chemistry, 2021, 93, 5371-5376.	3.2	9
6	Tumor Burden Limits Bispecific Antibody Efficacy through T-cell Exhaustion Averted by Concurrent Cytotoxic Therapy. Blood Cancer Discovery, 2021, 2, 354-369.	2.6	37
7	Antibody blockade of CD96 by distinct molecular mechanisms. MAbs, 2021, 13, 1979800.	2.6	2
8	High-Throughput Surface Plasmon Resonance Biosensors for Identifying Diverse Therapeutic Monoclonal Antibodies. Analytical Chemistry, 2021, 93, 16474-16480.	3.2	7
9	Universal Affinity Capture Liquid Chromatography-Mass Spectrometry Assay for Evaluation of Biotransformation of Site-Specific Antibody Drug Conjugates in Preclinical Studies. Analytical Chemistry, 2020, 92, 2065-2073.	3.2	19
10	Design and characterization of mouse IgG1 and IgG2a bispecific antibodies for use in syngeneic models. MAbs, 2020, 12, 1685350.	2.6	19
11	High-Throughput Platform to Identify Antibody Conjugation Sites from Antibody–Drug Conjugate Libraries. Bioconjugate Chemistry, 2020, 31, 1199-1208.	1.8	5
12	Integrated Approach for Characterizing Bispecific Antibody/Antigens Complexes and Mapping Binding Epitopes with SEC/MALS, Native Mass Spectrometry, and Protein Footprinting. Analytical Chemistry, 2020, 92, 10709-10716.	3.2	14
13	Targeting CLDN18.2 by CD3 Bispecific and ADC Modalities for the Treatments of Gastric and Pancreatic Cancer. Scientific Reports, 2019, 9, 8420.	1.6	41
14	Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Scientific Reports, 2019, 9, 2443.	1.6	15
15	RN765C, a low affinity EGFR antibody drug conjugate with potent anti-tumor activity in preclinical solid tumor models. Oncotarget, 2018, 9, 33446-33458.	0.8	15
16	Improved Lysosomal Trafficking Can Modulate the Potency of Antibody Drug Conjugates. Bioconjugate Chemistry, 2017, 28, 1102-1114.	1.8	35
17	Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another. PLoS ONE, 2017, 12, e0169535.	1.1	32
18	Engineering Highly Potent and Selective Microproteins against Nav1.7 Sodium Channel for Treatment of Pain. Journal of Biological Chemistry, 2016, 291, 13974-13986.	1.6	44

#	Article	IF	CITATION
19	RN927C, a Site-Specific Trop-2 Antibody–Drug Conjugate (ADC) with Enhanced Stability, Is Highly Efficacious in Preclinical Solid Tumor Models. Molecular Cancer Therapeutics, 2016, 15, 2698-2708.	1.9	78
20	Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design. Molecular Cancer Therapeutics, 2016, 15, 958-970.	1.9	141
21	Effect of Attachment Site on Stability of Cleavable Antibody Drug Conjugates. Bioconjugate Chemistry, 2015, 26, 650-659.	1.8	112
22	Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nature Biotechnology, 2015, 33, 694-696.	9.4	118
23	Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy. PLoS ONE, 2015, 10, e0132282.	1.1	47
24	Mass Spectrometric Characterization of Transglutaminase Based Site-Specific Antibody–Drug Conjugates. Bioconjugate Chemistry, 2014, 25, 240-250.	1.8	56
25	Versatility of Microbial Transglutaminase. Bioconjugate Chemistry, 2014, 25, 855-862.	1.8	149
26	Location Matters: Site of Conjugation Modulates Stability and Pharmacokinetics of Antibody Drug Conjugates. Chemistry and Biology, 2013, 20, 161-167.	6.2	412
27	Increasing Serum Half-life and Extending Cholesterol Lowering in Vivo by Engineering Antibody with pH-sensitive Binding to PCSK9. Journal of Biological Chemistry, 2012, 287, 11090-11097.	1.6	157
28	Generating Bispecific Human IgG1 and IgG2 Antibodies from Any Antibody Pair. Journal of Molecular Biology, 2012, 420, 204-219.	2.0	148