List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1770492/publications.pdf Version: 2024-02-01

RIN HAN

#	Article	IF	CITATIONS
1	Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42, 961-967.	9.4	1,978
2	A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490, 497-501.	13.7	1,428
3	GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006, 112, 1164-1171.	1.8	1,252
4	Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44, 32-39.	9.4	1,030
5	Control of tillering in rice. Nature, 2003, 422, 618-621.	13.7	988
6	High-throughput genotyping by whole-genome resequencing. Genome Research, 2009, 19, 1068-1076.	2.4	812
7	Draft genome sequence of <i>Camellia sinensis</i> var. <i>sinensis</i> provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4151-E4158.	3.3	730
8	OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48, 447-456.	9.4	662
9	Natural Variations and Genome-Wide Association Studies in Crop Plants. Annual Review of Plant Biology, 2014, 65, 531-551.	8.6	567
10	Pan-Genome of Wild and Cultivated Soybeans. Cell, 2020, 182, 162-176.e13.	13.5	508
11	The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys) Tj ETQq1 1 0.784	314 rgBT	/Overlock 10
12	The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics, 2006, 172, 1901-1914.	1.2	479
13	Sequence and analysis of rice chromosome 4. Nature, 2002, 420, 316-320.	13.7	471
14	Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics, 2018, 50, 278-284.	9.4	453
15	Identification and characterization of <i>Bph14</i> , a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22163-22168.	3.3	437
16	Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 2009, 379, 985-989.	1.0	425
17	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	9.4	413
18	A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45, 957-961.	9.4	411

#	Article	IF	CITATIONS
19	Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007, 394, 13-24.	1.0	371
20	BRITTLE CULM1, Which Encodes a COBRA-Like Protein, Affects the Mechanical Properties of Rice Plants. Plant Cell, 2003, 15, 2020-2031.	3.1	369
21	Transcriptome-wide investigation of circular RNAs in rice. Rna, 2015, 21, 2076-2087.	1.6	362
22	The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nature Genetics, 2015, 47, 625-631.	9.4	352
23	Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537, 629-633.	13.7	336
24	Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 2009, 229, 605-615.	1.6	319
25	Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 2010, 20, 1238-1249.	2.4	307
26	Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nature Genetics, 2001, 27, 201-204.	9.4	302
27	Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10578-10583.	3.3	299
28	The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 2007, 36, D1028-D1033.	6.5	295
29	Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6, 6258.	5.8	292
30	Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 2009, 176, 583-590.	1.7	290
31	Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47, 827-833.	9.4	265
32	A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018, 9, 645.	5.8	263
33	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	13.5	259
34	<i>An-1</i> Encodes a Basic Helix-Loop-Helix Protein That Regulates Awn Development, Grain Size, and Grain Number in Rice. Plant Cell, 2013, 25, 3360-3376.	3.1	226
35	Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Research, 2007, 17, 175-183.	2.4	218
36	Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor <i>SHATTERING ABORTION1</i>	3.1	217

#	Article	IF	CITATIONS
37	Genetic discovery for oil production and quality in sesame. Nature Communications, 2015, 6, 8609.	5.8	183
38	Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Journal of Experimental Botany, 2012, 63, 5451-5462.	2.4	156
39	Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication Â. Plant Physiology, 2011, 155, 1301-1311.	2.3	155
40	A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 2017, 8, 14789.	5.8	149
41	The Oryza Map Alignment Project: The Golden Path to Unlocking the Genetic Potential of Wild Rice Species. Plant Molecular Biology, 2005, 59, 53-62.	2.0	143
42	Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Molecular Biology, 2009, 71, 265-276.	2.0	143
43	Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics, 2011, 122, 327-340.	1.8	134
44	Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biology, 2017, 18, 33.	3.8	128
45	The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice. Plant Physiology, 2019, 180, 2077-2090.	2.3	127
46	An-2 Encodes a Cytokinin Synthesis Enzyme that Regulates Awn Length and Grain Production in Rice. Molecular Plant, 2015, 8, 1635-1650.	3.9	116
47	Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos. Molecular Plant, 2019, 12, 1353-1365.	3.9	116
48	Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, 2018, 11, 359-380.	3.9	113
49	Designing future crops: challenges and strategies for sustainable agriculture. Plant Journal, 2021, 105, 1165-1178.	2.8	110
50	Resequencing rice genomes: an emerging new era of rice genomics. Trends in Genetics, 2013, 29, 225-232.	2.9	108
51	Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant Journal, 2007, 49, 947-959.	2.8	107
52	Variability and adaptability of <i>Miscanthus</i> species evaluated for energy crop domestication. GCB Bioenergy, 2012, 4, 49-60.	2.5	107
53	Sequencing-based genome-wide association study in rice. Current Opinion in Plant Biology, 2013, 16, 133-138.	3.5	107
54	A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53, 243-253.	9.4	106

#	Article	IF	CITATIONS
55	Rice 2020: A Call For An International Coordinated Effort In Rice Functional Genomics. Molecular Plant, 2008, 1, 715-719.	3.9	104
56	Genome-wide intraspecific DNA-sequence variations in rice. Current Opinion in Plant Biology, 2003, 6, 134-138.	3.5	99
57	Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics, 2010, 11, 656.	1.2	96
58	Structural features of the rice chromosome 4 centromere. Nucleic Acids Research, 2004, 32, 2023-2030.	6.5	95
59	Genome-Wide Analysis of Transposon Insertion Polymorphisms Reveals Intraspecific Variation in Cultivated Rice Â. Plant Physiology, 2008, 148, 25-40.	2.3	88
60	A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications, 2014, 5, 3357.	5.8	88
61	RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	1.2	86
62	Shortened Basal Internodes Encodes a Gibberellin 2-Oxidase and Contributes to Lodging Resistance in Rice. Molecular Plant, 2018, 11, 288-299.	3.9	85
63	Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biology, 2010, 10, 116.	1.6	81
64	Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Plant Cell, 2008, 20, 2946-2959.	3.1	80
65	The Genomics of <i>Oryza</i> Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology, 2019, 70, 639-665.	8.6	80
66	<i>Ef-cd</i> locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18717-18722.	3.3	77
67	High throughput DNA sequencing: The new sequencing revolution. Plant Science, 2010, 179, 407-422.	1.7	76
68	Advances in genome-wide association studies of complex traits in rice. Theoretical and Applied Genetics, 2020, 133, 1415-1425.	1.8	72
69	Structural and transcriptional analysis of S -locus F-box genes in Antirrhinum. Sexual Plant Reproduction, 2003, 16, 165-177.	2.2	70
70	Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa). Gene, 2009, 431, 86-94.	1.0	69
71	Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4964-4969.	3.3	67
72	Monitoring of Gene Expression Profiles and Isolation of Candidate Genes Involved in Pollination and Fertilization in Rice (Oryza Sativa L.) with a 10K cDNA Microarray. Plant Molecular Biology, 2004, 54, 471-487.	2.0	66

#	Article	IF	CITATIONS
73	NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature, 2022, 601, 245-251.	13.7	66
74	Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nature Communications, 2019, 10, 2982.	5.8	65
75	A Fine Physical Map of the Rice Chromosome 4. Genome Research, 2002, 12, 817-823.	2.4	64
76	Microarray Analysis Reveals Similarities and Variations in Genetic Programs Controlling Pollination/Fertilization and Stress Responses in Rice (Oryza sativa L.). Plant Molecular Biology, 2005, 59, 151-164.	2.0	61
77	A Tiling Microarray Expression Analysis of Rice Chromosome 4 Suggests a Chromosome-Level Regulation of Transcription. Plant Cell, 2005, 17, 1641-1657.	3.1	56
78	A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Plant Molecular Biology, 2007, 65, 403-415.	2.0	55
79	Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nature Communications, 2021, 12, 2563.	5.8	51
80	The integrated genomics of crop domestication and breeding. Cell, 2022, 185, 2828-2839.	13.5	47
81	The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnology Journal, 2020, 18, 443-456.	4.1	45
82	Translational Regulation of Plant Response to High Temperature by a Dual-Function tRNAHis Guanylyltransferase in Rice. Molecular Plant, 2019, 12, 1123-1142.	3.9	44
83	Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. Journal of Genetics and Genomics, 2011, 38, 603-611.	1.7	42
84	Transcriptome and Allele Specificity Associated with a 3BL Locus for Fusarium Crown Rot Resistance in Bread Wheat. PLoS ONE, 2014, 9, e113309.	1.1	42
85	SEG-Map: A Novel Software for Genotype Calling and Genetic Map Construction from Next-generation Sequencing. Rice, 2010, 3, 98-102.	1.7	40
86	A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice, 2012, 5, 30.	1.7	40
87	Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat. BMC Genomics, 2015, 16, 850.	1.2	40
88	Rice domestication occurred through single origin and multiple introgressions. Nature Plants, 2016, 2, 15207.	4.7	40
89	Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. Plant Journal, 2005, 42, 772-780.	2.8	39
90	Genomeâ€wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18, 185-194.	4.1	39

#	Article	IF	CITATIONS
91	Dissecting the Genetic Basis of Grain Shape and Chalkiness Traits in Hybrid Rice Using Multiple Collaborative Populations. Molecular Plant, 2017, 10, 1353-1356.	3.9	38
92	A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.). Journal of Genetics and Genomics, 2012, 39, 335-350.	1.7	35
93	Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene, 2004, 324, 105-115.	1.0	34
94	Collection and Comparative Analysis of 1888 Full-length cDNAs from Wild Rice Oryza rufipogon Griff. W1943. DNA Research, 2008, 15, 285-295.	1.5	34
95	OryzaGenome: Genome Diversity Database of Wild <i>Oryza</i> Species. Plant and Cell Physiology, 2016, 57, e1-e1.	1.5	34
96	FAIR: A Call to Make Published Data More Findable, Accessible, Interoperable, and Reusable. Molecular Plant, 2018, 11, 1105-1108.	3.9	31
97	The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data. Scientific Data, 2019, 6, 122.	2.4	29
98	Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap. Journal of Biotechnology, 2004, 109, 217-226.	1.9	28
99	Rice functional genomics research in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1009-1021.	1.8	28
100	A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27105-27114.	3.3	27
101	Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theoretical and Applied Genetics, 2010, 121, 295-309.	1.8	25
102	Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome. Nature Communications, 2021, 12, 2458.	5.8	25
103	RICD: A rice indicacDNA database resource for rice functional genomics. BMC Plant Biology, 2008, 8, 118.	1.6	24
104	The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. Planta, 2013, 238, 845-857.	1.6	24
105	Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 × Nipponbare in rice (Oryza sativa). Plant Cell Reports, 2013, 32, 103-116.	2.8	24
106	Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice. Theoretical and Applied Genetics, 2004, 108, 392-400.	1.8	22
107	Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20. Molecular Plant, 2021, 14, 997-1011.	3.9	19
108	Comparative Population Genomics Reveals Strong Divergence and Infrequent Introgression between Asian and African Rice. Molecular Plant, 2015, 8, 958-960.	3.9	18

#	Article	IF	CITATIONS
109	Understanding the genetic basis of rice heterosis: Advances and prospects. Crop Journal, 2021, 9, 688-692.	2.3	18
110	Isolation and annotation of 10828 putative full length cDNAs from indica rice. Science in China Series C: Life Sciences, 2005, 48, 445.	1.3	17
111	A Pilot Study of Transcription Unit Analysis in Rice Using Oligonucleotide Tiling-path Microarray. Plant Molecular Biology, 2005, 59, 137-149.	2.0	17
112	OryzaGenome2.1: Database of Diverse Genotypes in Wild Oryza Species. Rice, 2021, 14, 24.	1.7	17
113	Evolutionary conservation of neighbouring gene pairs in plants. Gene, 2009, 437, 71-79.	1.0	16
114	Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. Molecular Plant, 2022, 15, 593-619.	3.9	15
115	QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Euphytica, 2006, 152, 141-148.	0.6	14
116	Sequence analysis of mRNA polyadenylation signals of rice genes. Science Bulletin, 2006, 51, 1069-1077.	1.7	12
117	Population genetics and evolutionary history of Miscanthus species in China. Journal of Systematics and Evolution, 2019, 57, 530-542.	1.6	12
118	Rice Protein Tagging Project: A Call for International Collaborations on Genome-wide In-Locus Tagging of Rice Proteins. Molecular Plant, 2020, 13, 1663-1665.	3.9	11
119	Differentiation of a Miniature Inverted Transposable Element (MITE) System in Asian Rice Cultivars and Its Inference for a Diphyletic Origin of Two Subspecies of Asian Cultivated Rice. Journal of Integrative Plant Biology, 2006, 48, 260-267.	4.1	10
120	Genomeâ€wide screen and functional analysis in <i>Xanthomonas</i> reveal a large number of mRNAâ€derived sRNAs, including the novel RsmAâ€sequester RsmU. Molecular Plant Pathology, 2020, 21, 1573-1590.	2.0	10
121	Isolation of a single rice chromosome by optical micromanipulation. Journal of Optics, 2004, 6, 89-93.	1.5	8
122	Rice Genome Research: Current Status and Future Perspectives. Plant Genome, 2008, 1, .	1.6	7
123	Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 2018, 131, 1125-1132.	1.8	7
124	Analysis of collinear regions of Oryza AA and CC genomes. Journal of Genetics and Genomics, 2009, 36, 667-677.	1.7	6
125	Rapid turnover of antimicrobial-type cysteine-rich protein genes in closely related Oryza genomes. Molecular Genetics and Genomics, 2015, 290, 1753-1770.	1.0	6
126	How can rice genetics benefit from rice-domestication study?. National Science Review, 2016, 3, 278-280.	4.6	6

#	Article	IF	CITATIONS
127	Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza) Tj ETQq1 1	0.784314 4.3	rg&T /Overlo
128	Cytoplasmic and nuclear genome variations of rice hybrids and their parents inform the trajectory and strategy of hybrid rice breeding. Molecular Plant, 2021, 14, 2056-2071.	3.9	5
129	Rice Genome Sequence: The Foundation for Understanding the Genetic Systems. , 2007, , 5-20.		3
130	Genomics: Decoding the ancestors of peanut. Nature Plants, 2016, 2, 16042.	4.7	3
131	Genome-Wide Association Mapping of Complex Traits in Rice. , 2018, , 497-510.		3
132	The magic of genomics in creating hybrid potato. Molecular Plant, 2021, 14, 1237-1238.	3.9	3
133	Dampable Waves along Nucleic Acid Sequences Mediating Nucleotides' Interactions. DNA Sequence, 2004, 15, 135-139.	0.7	0
134	Natural Variation and Sequencing-Based Genetics Studies. , 2013, , 27-34.		0
135	Genotype calling and haplotype inference from low coverage sequence data in heterozygous plant genome using HetMap. Theoretical and Applied Genetics, 2022, , .	1.8	0
136	Cutting the Gordian knot of plant genetics: retrieval of missing heritability in tomato. Science China Life Sciences, 0, , .	2.3	0