
Hans Joosten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1770269/publications.pdf Version: 2024-02-01

HANS LOOSTEN

#	Article	IF	CITATIONS
1	Greenhouse gas fluxes from tropical peatlands in southâ€east Asia. Global Change Biology, 2010, 16, 1715-1732.	9.5	361
2	Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia, 2011, 674, 67-89.	2.0	200
3	Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 2020, 11, 1644.	12.8	168
4	Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews, 2011, 30, 999-1010.	3.0	164
5	Investing in nature: Developing ecosystem service markets for peatland restoration. Ecosystem Services, 2014, 9, 54-65.	5.4	98
6	Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 2022, 376, eabn1479.	12.6	93
7	Rewetting does not return drained fen peatlands to their old selves. Nature Communications, 2021, 12, 5693.	12.8	75
8	Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity. Journal of Ecology, 2005, 93, 1238-1248.	4.0	70
9	The role of peatlands in climate regulation. , 2016, , 63-76.		59
10	Forest dynamics and tipâ€up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). Journal of Geophysical Research G: Biogeosciences, 2015, 120, 617-640.	3.0	56
11	Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Review of Palaeobotany and Palynology, 2006, 141, 7-31.	1.5	54
12	Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafrost and Periglacial Processes, 2009, 20, 357-368.	3.4	50
13	Younger <scp>D</scp> ryas cold stage vegetation patterns of central <scp>E</scp> urope – climate, soil and relief controls. Boreas, 2012, 41, 391-407.	2.4	45
14	From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems, 2020, 4, 14.	2.6	45
15	Palaeoecological analysis of Alnus wood peats with special attention to non-pollen palynomorphs. Review of Palaeobotany and Palynology, 2006, 141, 33-51.	1.5	43
16	Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quaternary Science Reviews, 2011, 30, 3013-3031.	3.0	41
17	Mires in Europe—Regional Diversity, Condition and Protection. Diversity, 2021, 13, 381.	1.7	36
18	4000 Years of Changing Wetness in a Permafrost Polygon Peatland (Kytalyk, NE Siberia): A Comparative Highâ€Resolution Multiâ€Proxy Study. Permafrost and Periglacial Processes, 2016, 27, 76-95.	3.4	28

HANS JOOSTEN

#	Article	IF	CITATIONS
19	Axenic <i>in vitro</i> cultivation of 19 peat moss (<i>Sphagnum</i> L.) species as a resource for basic biology, biotechnology, and paludiculture. New Phytologist, 2021, 229, 861-876.	7.3	28
20	Vegetation characteristics and eco-hydrological processes in a pristine mire in the Ob River valley (Western Siberia). Plant Ecology, 2007, 193, 131-145.	1.6	27
21	Vegetation patterns, recent pollen deposition and distribution of nonâ€pollen palynomorphs in a polygon mire near Chokurdakh (NE Yakutia, NE Siberia). Boreas, 2009, 38, 39-58.	2.4	25
22	Pollen and non-pollen palynomorphs as tools for identifying alder carr deposits: A surface sample study from NE-Germany. Review of Palaeobotany and Palynology, 2012, 186, 38-57.	1.5	23
23	DAMOCLES: a DAshing MOnolith Cutter for fine sectioning of peats and sediments into LargE Slices. Boreas, 2007, 36, 76-81.	2.4	21
24	Wet peatland utilisation for climate protection – An international survey of paludiculture innovation. Cleaner Engineering and Technology, 2021, 5, 100305.	4.0	21
25	Vegetation patterns, pollen deposition and distribution of non-pollen palynomorphs in an ice-wedge polygon near Kytalyk (NE Siberia), with some remarks on Arctic pollen morphology. Polar Biology, 2014, 37, 1393-1412.	1.2	20
26	Expanding NPP analysis to eutrophic and forested sites: Significance of NPPs in a Holocene wood peat section (NE Germany). Review of Palaeobotany and Palynology, 2012, 186, 22-37.	1.5	19
27	MARCO POLO – A new and simple tool for pollen-based stand-scale vegetation reconstruction. Holocene, 2017, 27, 321-330.	1.7	19
28	SOC Stock Changes and Greenhouse Gas Emissions Following Tropical Land Use Conversions to Plantation Crops on Mineral Soils, with a Special Focus on Oil Palm and Rubber Plantations. Agriculture (Switzerland), 2018, 8, 133.	3.1	19
29	Multispectral satellite based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow Region (Russia). Ecological Engineering, 2020, 158, 106044.	3.6	18
30	Great Vasyugan Mire: How the world's largest peatland helps addressing the world's largest problems. Ambio, 2021, 50, 2038-2049.	5.5	18
31	DAMOCLES: a DAshing MOnolith Cutter for fine sectioning of peats and sediments into LargE Slices. Boreas, 2007, 36, 76-81.	2.4	17
32	Vegetation, recent pollen deposition, and distribution of some non-pollen palynomorphs in a degrading ice-wedge polygon mire complex near Pokhodsk (NE Siberia), including size-frequency analyses of pollen attributable to Betula. Review of Palaeobotany and Palynology, 2017, 238, 122-143.	1.5	15
33	Sphagnum farming: the promised land for peat bog species?. Biodiversity and Conservation, 2015, 24, 1989-2009.	2.6	14
34	<i>Sphagnum</i> growth under N saturation: interactive effects of water level and P or K fertilization. Plant Biology, 2020, 22, 394-403.	3.8	13
35	Nutrient dynamics of Sphagnum farming on rewetted bog grassland in NW Germany. Science of the Total Environment, 2020, 726, 138470.	8.0	13
36	Assessing Wood and Soil Carbon Losses from a Forest-Peat Fire in the Boreo-Nemoral Zone. Forests, 2021, 12, 880.	2.1	9

HANS JOOSTEN

#	Article	IF	CITATIONS
-11-			CHAHONS
37	Addressing Peatland Rewetting in Russian Federation Climate Reporting. Land, 2021, 10, 1200.	2.9	8
38	Peatland biodiversity and its restoration. , 2016, , 44-62.		7
39	Archive value: measuring the palaeo-information content of peatlands in a conservation and compensation perspective. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14, 209-220.	2.9	6
40	Seven years of spider community succession in a Sphagnum farm. Journal of Arachnology, 2020, 48, .	0.5	4
41	Short-distance distribution patterns of testate amoebae in an Arctic ice-wedge polygon mire (Berelekh-Indigirka lowlands, NE Siberia). Polar Biology, 2020, 43, 1321-1340.	1.2	2
42	A robust vegetation-based elevation transfer method for reconstructing Arctic polygon mire palaeo-microtopography. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522, 12-27.	2.3	1
43	From genes to landscapes: Pattern formation and selfâ€regulation in raised bogs with an example from Tierra del Fuego. Ecosphere, 2022, 13, .	2.2	1