
## William D Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1770224/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reducing risk, improving outcomes: Bioengineering less immunogenic protein therapeutics. Clinical<br>Immunology, 2009, 131, 189-201.                                                                                                             | 3.2 | 165       |
| 2  | Immunoâ€informatics: Mining genomes for vaccine components. Immunology and Cell Biology, 2002, 80, 255-269.                                                                                                                                      | 2.3 | 153       |
| 3  | The two-faced T cell epitope. Human Vaccines and Immunotherapeutics, 2013, 9, 1577-1586.                                                                                                                                                         | 3.3 | 88        |
| 4  | Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Frontiers in Immunology, 2020, 11, 442.                                                                                    | 4.8 | 78        |
| 5  | Mapping cross-clade HIV-1 vaccine epitopes using a bioinformatics approach. Vaccine, 2003, 21, 4486-4504.                                                                                                                                        | 3.8 | 68        |
| 6  | Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clinical Immunology, 2012, 142, 320-331.                                                                                                                           | 3.2 | 68        |
| 7  | CHOPPI: A web tool for the analysis of immunogenicity risk from host cell proteins in CHOâ€based protein production. Biotechnology and Bioengineering, 2014, 111, 2170-2182.                                                                     | 3.3 | 47        |
| 8  | H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Human Vaccines and Immunotherapeutics, 2015, 11, 2241-2252.                                                                         | 3.3 | 40        |
| 9  | Immune camouflage: Relevance to vaccines and human immunology. Human Vaccines and<br>Immunotherapeutics, 2014, 10, 3570-3575.                                                                                                                    | 3.3 | 39        |
| 10 | HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response<br>in infected patients. Journal of Hepatology, 2015, 62, 48-55.                                                                               | 3.7 | 39        |
| 11 | A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines.<br>Scientific Reports, 2017, 7, 1283.                                                                                                                | 3.3 | 35        |
| 12 | Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinformatics, 2014, 15, S1.                                                                                          | 2.6 | 34        |
| 13 | Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are<br>Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Frontiers in Immunology, 2019,<br>10, 207.                                | 4.8 | 33        |
| 14 | In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model. PLoS ONE, 2016, 11, e0159237.                                                                                                                          | 2.5 | 31        |
| 15 | T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Review of Vaccines, 2016, 15, 607-617.                                                       | 4.4 | 28        |
| 16 | Immunization with cross-conserved H1N1 influenza CD4+T-cell epitopes lowers viral burden in HLA DR3<br>transgenic mice. Human Vaccines and Immunotherapeutics, 2013, 9, 2060-2068.                                                               | 3.3 | 24        |
| 17 | De-immun ized and F unctional T herapeutic (DeFT) versions of a long lasting recombinant alpha<br>interferon for antiviral therapy. Clinical Immunology, 2017, 176, 31-41.                                                                       | 3.2 | 19        |
| 18 | T cell epitope content comparison (EpiCC) analysis demonstrates a bivalent PCV2 vaccine has greater T<br>cell epitope overlap with field strains than monovalent PCV2 vaccines. Veterinary Immunology and<br>Immunopathology, 2020, 223, 110034. | 1.2 | 18        |

WILLIAM D MARTIN

| #  | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Human<br>Vaccines and Immunotherapeutics, 2020, 16, 214-227.                                                                                                                                                  | 3.3 | 17        |
| 20 | Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy.<br>Expert Review of Vaccines, 2022, 21, 173-184.                                                                                                                                                      | 4.4 | 17        |
| 21 | Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. BMC Bioinformatics, 2015, 16, 290.                                                                                                                                                 | 2.6 | 16        |
| 22 | In silico identification and modification of T cell epitopes in pertussis antigens associated with tolerance. Human Vaccines and Immunotherapeutics, 2020, 16, 277-285.                                                                                                                               | 3.3 | 16        |
| 23 | Tâ€cell epitope content comparison (Epi <scp>CC</scp> ) of swine H1 influenza A virus hemagglutinin.<br>Influenza and Other Respiratory Viruses, 2017, 11, 531-542.                                                                                                                                   | 3.4 | 15        |
| 24 | Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever. Infection and Immunity, 2019, 87, .                                                                                                                                                                             | 2.2 | 10        |
| 25 | Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory<br>T cell responses. Clinical Immunology, 2021, 224, 108661.                                                                                                                                     | 3.2 | 10        |
| 26 | Immune Tolerance-Adjusted Personalized Immunogenicity Prediction for Pompe Disease. Frontiers in<br>Immunology, 2021, 12, 636731.                                                                                                                                                                     | 4.8 | 10        |
| 27 | New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Frontiers in Immunology, 2020, 11, 563362.                                                                                                                      | 4.8 | 9         |
| 28 | Development of a novel fully functional coagulation factor VIII with reduced immunogenicity<br>utilizing an in silico prediction and deimmunization approach. Journal of Thrombosis and<br>Haemostasis, 2021, 19, 2161-2170.                                                                          | 3.8 | 8         |
| 29 | Development of highly stable and de-immunized versions of recombinant alpha interferon: Promising candidates for the treatment of chronic and emerging viral diseases. Clinical Immunology, 2021, 233, 108888.                                                                                        | 3.2 | 8         |
| 30 | Differential functional patterns of memory CD4+ and CD8+ T-cells from volunteers immunized with<br>Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi<br>proteins. Vaccine, 2020, 38, 258-270.                                                            | 3.8 | 7         |
| 31 | Multi-step screening of neoantigens' HLA- and TCR-interfaces improves prediction of survival.<br>Scientific Reports, 2021, 11, 9983.                                                                                                                                                                  | 3.3 | 4         |
| 32 | Identification and Immune Assessment of T Cell Epitopes in Five Plasmodium falciparum Blood Stage<br>Antigens to Facilitate Vaccine Candidate Selection and Optimization. Frontiers in Immunology, 2021, 12,<br>690348.                                                                               | 4.8 | 4         |
| 33 | Bridging Computational Vaccinology and Vaccine Development Through Systematic Identification,<br>Characterization, and Downselection of Conserved and Variable Circumsporozoite Protein CD4 T Cell<br>Epitopes From Diverse Plasmodium falciparum Strains. Frontiers in Immunology, 2021, 12, 689920. | 4.8 | 3         |
| 34 | Exploit T cell Immunity for Rapid, Safe and Effective COVID-19 Vaccines. Expert Review of Vaccines, 2020, 19, 781-784.                                                                                                                                                                                | 4.4 | 1         |
| 35 | Identification, Selection and Immune Assessment of Liver Stage CD8 T Cell Epitopes From Plasmodium falciparum. Frontiers in Immunology, 2021, 12, 684116.                                                                                                                                             | 4.8 | 0         |