Katarzyna Winiarska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1769810/publications.pdf

Version: 2024-02-01

840776 752698 19 552 11 20 citations h-index g-index papers 21 21 21 800 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Transcription Factor ChREBP Mediates High Glucose-Evoked Increase in HIF- $1\hat{l}\pm$ Content in Epithelial Cells of Renal Proximal Tubules. International Journal of Molecular Sciences, 2021, 22, 13299.	4.1	6
2	Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-dependent activation of phosphoenolpyruvate carboxykinase expression. Biochimie, 2020, 171-172, 31-37.	2.6	18
3	Melatonin Lowers HIF- $1\hat{i}$ ± Content in Human Proximal Tubular Cells (HK-2) Due to Preventing Its Deacetylation by Sirtuin 1. Frontiers in Physiology, 2020, 11, 572911.	2.8	9
4	HIF - czynnik transkrypcyjny na miarÄ™ Nagrody Nobla 2019. Cosmos: Problems of Biological Sciences, 2020, 69, 269-276.	0.1	0
5	DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 17-26.	2.5	9
6	Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on <scp>NADPH</scp> oxidase. Journal of Pineal Research, 2016, 60, 109-117.	7.4	47
7	ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity. Free Radical Biology and Medicine, 2015, 81, 13-21.	2.9	16
8	Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis inSaccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, fov048.	2.3	5
9	NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: A comparison with melatonin. Chemico-Biological Interactions, 2014, 218, 12-19.	4.0	29
10	Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin. Chemico-Biological Interactions, 2011, 189, 119-126.	4.0	17
11	Differential action of methylselenocysteine in control and alloxan-diabetic rabbits. Chemico-Biological Interactions, 2009, 177, 161-171.	4.0	13
12	Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie, 2009, 91, 261-270.	2.6	98
13	Lipoic acid ameliorates oxidative stress and renal injury in alloxan diabetic rabbits. Biochimie, 2008, 90, 450-459.	2.6	58
14	Melatonin is more effective than taurine and 5-hydroxytryptophan against hyperglycemia-induced kidney-cortex tubules injury. Journal of Pineal Research, 2007, 42, 203-209.	7.4	20
15	Melatonin attenuates diabetes-induced oxidative stress in rabbits. Journal of Pineal Research, 2006, 40, 168-176.	7.4	144
16	Contribution of l-3,4-dihydroxyphenylalanine metabolism to the inhibition of gluconeogenesis in rabbit kidney-cortex tubules. International Journal of Biochemistry and Cell Biology, 2005, 37, 1269-1280.	2.8	7
17	AMINO-ACID-DEPENDENT, DIFFERENTIAL EFFECTS OF ETHANOL ON GLUCOSE PRODUCTION IN RABBIT KIDNEY-CORTEX TUBULES. Alcohol and Alcoholism, 2004, 39, 93-100.	1.6	9
18	Relationship between gluconeogenesis and glutathione redox state in rabbit kidney-cortex tubules. Metabolism: Clinical and Experimental, 2003, 52, 739-746.	3.4	32

#	Article	IF	CITATIONS
19	Purinergic regulation of glucose and glutamine synthesis in isolated rabbit kidney–cortex tubules. Archives of Biochemistry and Biophysics, 2002, 404, 186-196.	3.0	6