Tao Wei

List of Publications by Citations

Source: https://exaly.com/author-pdf/1769561/tao-wei-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,579 74 23 37 h-index g-index citations papers 81 8.2 2,085 4.95 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
74	A Photoresponsive Rutile TiO Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1806596	24	137
73	Thermal and electrochemical properties of PrBa0.5Sr0.5Co2\(\mathbb{R}\)FexO5+\(\mathbb{I}\)(x\(\mathbb{L}\)\(\mathbb{D}\).5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. <i>Journal of Power Sources</i> , 2013 , 232, 279-285	8.9	101
7 2	Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 225-231		83
71	Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 8197-8213	6.7	64
70	Sr3BxNa3xSi3O9fl.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1680-1684	35.4	61
69	Electrochemical performance of double-perovskite Ba2MMoO6 (M=Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2012 , 198, 59-65	8.9	61
68	High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure. <i>Nano Energy</i> , 2018 , 50, 62-69	17.1	60
67	Sr2NiMoO6las anode material for LaGaO3-based solid oxide fuel cell. <i>Electrochemistry Communications</i> , 2008 , 10, 1369-1372	5.1	58
66	Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke. <i>Fuel Processing Technology</i> , 2019 , 191, 138-151	7.2	55
65	Characterization of Pr1\(\text{NSrxCo0.8Fe0.2O3[(0.2 \text{ k (D.6)})} \) cathode materials for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2008 , 183, 581-585	8.9	54
64	Evaluation of Pr1+xBa1-xCo2O5+ \mathbb{Q} x = 0 - 0.30) as cathode materials for solid-oxide fuel cells. Electrochimica Acta, 2014 , 133, 364-372	6.7	49
63	Understanding correlation of the interaction between nickel and alumina with the catalytic behaviors in steam reforming and methanation. <i>Fuel</i> , 2019 , 250, 176-193	7.1	43
62	A reversible and stable flake-like LiCoO2 cathode for lithium ion batteries. <i>Chemical Communications</i> , 2014 , 50, 1962-4	5.8	41
61	Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. <i>Biomass and Bioenergy</i> , 2019 , 124, 125-141	5.3	40
60	An All-Ceramic Solid-State Rechargeable Na+-Battery Operated at Intermediate Temperatures. <i>Advanced Functional Materials</i> , 2014 , 24, 5380-5384	15.6	39
59	High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba). Journal of Power Sources, 2017 , 359, 384-390	8.9	36
58	Steam reforming of guaiacol over Ni/SiO2 catalyst modified with basic oxides: Impacts of alkalinity on properties of coke. <i>Energy Conversion and Management</i> , 2020 , 205, 112301	10.6	28

57	Ultrathin and Highly Crystalline Co3O4 Nanosheets In Situ Grown on Graphene toward Enhanced Supercapacitor Performance. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600884	4.6	27
56	Defect control for enhanced piezoelectric properties in SnO 2 and ZrO 2 co-modified KNN ceramics fired under reducing atmosphere. <i>Journal of the European Ceramic Society</i> , 2017 , 37, 2057-2065	6	25
55	Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3D Sm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2015 , 275, 808-81	1 <mark>8</mark> :9	25
54	A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance. <i>Journal of Power Sources</i> , 2016 , 319, 178-184	8.9	25
53	Intrinsic Effects of Ruddlesden-Popper-Based Bifunctional Catalysts for High-Temperature Oxygen Reduction and Evolution. <i>Advanced Energy Materials</i> , 2019 , 9, 1901573	21.8	24
52	Flux of silver-carbonate membranes for post-combustion CO2 capture: The effects of membrane thickness, gas concentration and time. <i>Journal of Membrane Science</i> , 2014 , 455, 162-167	9.6	24
51	Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 2024-2033	3.8	21
50	BaCo[sub 0.7]Fe[sub 0.2]Nb[sub 0.1]O[sub 3¶Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, B103	3	21
49	Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat. <i>Chemistry of Materials</i> , 2012 , 24, 1401-1403	9.6	20
48	Impacts of La addition on formation of the reaction intermediates over alumina and silica supported nickel catalysts in methanation of CO2. <i>Journal of the Energy Institute</i> , 2020 , 93, 723-738	5.7	20
47	Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell. <i>Scientific Reports</i> , 2013 , 3, 1125	4.9	19
46	Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3lcathodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7461-7468	13	18
45	Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 4833-4842	9.5	16
44	Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors. <i>Journal of Materiomics</i> , 2021 , 7, 780-789	6.7	16
43	High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. <i>ACS Applied Materials & ACS Applied & ACS</i>	9.5	15
42	Promising Proton Conductor for Intermediate-Temperature Fuel Cells: Li13.9Sr0.1Zn(GeO4)4. <i>Chemistry of Materials</i> , 2017 , 29, 1490-1495	9.6	14
41	Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 1002-1010	6	14
40	Anode-supported solid oxide fuel cells based on Sm0.2Ce0.8O1.9 electrolyte fabricated by a phase-inversion and drop-coating process. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 10907-109	913	13

39	One-pot synthesized hetero-structured Ca3Co2O6/La0.6Ca0.4CoO3 dual-phase composite cathode materials for solid-oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 12750-12760	6.7	12
38	Achieving ultrahigh energy storage efficiency in local-composition gradient-structured ferroelectric ceramics. <i>Chemical Engineering Journal</i> , 2021 , 425, 129506	14.7	12
37	Controlling grain size in columnar YSZ coating formation by droplet filtering assisted PS-PVD processing. <i>RSC Advances</i> , 2015 , 5, 102126-102133	3.7	10
36	Interfacial effects on electrical conductivity in ultrafine-grained Sm0.2Ce0.8O2Ielectrolytes fabricated by a two-step sintering process. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 11823-17	18279	9
35	Electrical conduction and dielectric relaxation mechanisms in the KNN-based ceramics. <i>Journal of Applied Physics</i> , 2019 , 126, 104101	2.5	9
34	Composites of Single/Double Perovskites as Cathodes for Solid Oxide Fuel Cells. <i>Energy Technology</i> , 2016 , 4, 804-808	3.5	9
33	La2NiO4+Infiltration of Plasma-Sprayed LSCF Coating for Cathode Performance Improvement. Journal of Thermal Spray Technology, 2016 , 25, 392-400	2.5	9
32	Synergetic effects of hydrogenation and acidic sites in phosphorus-modified nickel catalysts for the selective conversion of furfural to cyclopentanone. <i>Catalysis Science and Technology</i> , 2021 , 11, 575-593	5.5	9
31	Impacts of Solvents on the Stability of the Biomass-Derived Sugars and Furans. <i>Energy & Energy & Ener</i>	4.1	8
30	Thermoelectric solid-oxide fuel cell with Ca2Co2O5 as cathode material. RSC Advances, 2013, 3, 2336	3.7	8
29	A microchannel reactor-integrated ceramic fuel cell with dual-coupling effect for efficient power and syngas co-generation from methane. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120443	21.8	8
28	Essential microstructure of cathode functional layers of solid oxide electrolysis cells for CO2 electrolysis. <i>Journal of CO2 Utilization</i> , 2019 , 32, 214-218	7.6	7
27	Catalytic CeO2 washcoat over microchanneled supporting cathodes of solid oxide electrolysis cells for efficient and stable CO2 reduction. <i>Journal of Power Sources</i> , 2019 , 412, 344-349	8.9	7
26	Autothermal reforming of methane over an integrated solid oxide fuel cell reactor for power and syngas co-generation. <i>Journal of Power Sources</i> , 2021 , 513, 230536	8.9	7
25	Efficient conversion of methane into power via microchanneled solid oxide fuel cells. <i>Journal of Power Sources</i> , 2020 , 453, 227848	8.9	6
24	Revealing the Intrinsic Origin for Performance-Enhancing VO Electrode Materials. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	6
23	Enhanced photocatalytic activity and cycle stability driven by ultrasonic vibration for ferroelectric photocatalysts. <i>IET Nanodielectrics</i> , 2019 , 2, 48-53	2.8	6
22	A Comparative Study on the Li+/Na+ Transportation in NASICON-Type Electrolytes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20565-20570	3.8	6

(2021-2020)

21	Design of p-type NKN-based piezoelectric ceramics sintered in low oxygen partial pressure by defect engineering. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 3667-3675	3.8	5
20	Systematic effect of contaminations on IT-SOFCs cathode stability: a quantifiable correlation versus cathode-side poisoning and protection. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5172-5184	13	5
19	Enhanced ferro-photocatalytic performance for ANbO (A = Na, K) nanoparticles. <i>Mathematical Biosciences and Engineering</i> , 2019 , 16, 4122-4134	2.1	5
18	Robust Anode-Supported Cells with Fast Oxygen Release Channels for Efficient and Stable CO Electrolysis at Ultrahigh Current Densities. <i>Small</i> , 2021 , 17, e2007211	11	5
17	A highly active CH4 catalyst correlated with solid oxide fuel cell anode performance. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5067-5074	13	5
16	Factors influencing Li+ migration in garnet-type ceramic electrolytes. <i>Journal of Materiomics</i> , 2019 , 5, 214-220	6.7	4
15	Enhanced electrochemical activity in Ca3Co2O6 cathode for solid-oxide fuel cells by Cu substitution. <i>Journal of Materiomics</i> , 2015 , 1, 60-67	6.7	4
14	Enhanced thermal and cycling reliabilities in (K,Na)(Nb,Sb)O3-CaZrO3-(Bi,Na)HfO3 ceramics. <i>Journal of Advanced Ceramics</i> , 2020 , 9, 349-359	10.7	3
13	Evaluation of Ca 3 (Co,M) 2 O 6 (M=Co, Fe, Mn, Ni) as new cathode materials for solid-oxide fuel cells. <i>Progress in Natural Science: Materials International</i> , 2015 , 25, 370-378	3.6	3
12	Achieving high mechanical-strength CH4-based SOFCs by low-temperature sintering (1100IIC). <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 3086-3093	6.7	3
11	Ultrahigh energy harvesting properties in Ag decorated potassium-sodium niobite particle-polymer composite. <i>Journal of Materiomics</i> , 2020 , 6, 355-363	6.7	3
10	Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions. <i>Electrochimica Acta</i> , 2021 , 370, 137747	6.7	3
9	Enhanced Photocatalytic Activity by the Combined Influence of Ferroelectric Domain and Au Nanoparticles for BaTiO3 Fibers. <i>Nano</i> , 2018 , 13, 1850149	1.1	3
8	Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 18659-18665	2.1	2
7	Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production. <i>Chemical Engineering Journal</i> , 2022 , 434, 134699	14.7	1
6	3D Vertically Aligned Microchannel Three-Layer All Ceramic Lithium Ion Battery for High-Rate and Long-Cycle Electrochemical Energy Storage <i>Small</i> , 2022 , e2107442	11	1
5	Optimization of Cathode Functional Layers of Solid Oxide Electrolysis Cells. <i>ACS Applied Materials & Emp; Interfaces</i> , 2020 , 12, 40917-40924	9.5	1
4	The optimal sintering atmosphere and defect structure of CuO-doped NKN-based ceramic with p/n-type conduction mechanism. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 1928-19	940 ¹	1

3	Defect engineering of BCZT-based piezoelectric ceramics with high piezoelectric properties. Journal of Advanced Ceramics, 2022 , 11, 184-195	10.7 1
2	Optimizing coupling agent for the enhanced energy storage density of BaTiO3/P(VDF IHFP)&PMMA nanocomposite films. <i>Journal of Polymer Research</i> , 2021 , 28, 1	2.7 0
1	Defect engineering on sea-urchin-like transition-metal oxides for high-performance	8.9 0

supercapacitors. Journal of Power Sources, 2022, 533, 231409

Tao Wei