Wanan Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1769443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters. Energies, 2022, 15, 2485.	3.1	4
2	Hydrodynamic studies of floating structures: Comparison of wave-structure interaction modelling. Ocean Engineering, 2022, 249, 110878.	4.3	14
3	Time-Domain Implementation and Analyses of Multi-Motion Modes of Floating Structures. Journal of Marine Science and Engineering, 2022, 10, 662.	2.6	4
4	Power Take-Off System. , 2022, , 1379-1387.		0
5	Wave Measurement Buoy. , 2022, , 2142-2149.		0
6	Wave Energy Converters. , 2022, , 2121-2128.		0
7	A Study on the Effects of Wave Spectra on Wave Energy Conversions. IEEE Journal of Oceanic Engineering, 2020, 45, 271-283.	3.8	30
8	Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant. Renewable Energy, 2020, 146, 2766-2784.	8.9	24
9	Power Take-Off System. , 2020, , 1-9.		0
10	Wave Energy Converters. , 2020, , 1-9.		0
11	Power performance of BBDB OWC wave energy converters. Renewable Energy, 2019, 132, 709-722.	8.9	51
12	Ocean Energy Systems Wave Energy Modelling Task: Modelling, Verification and Validation of Wave Energy Converters. Journal of Marine Science and Engineering, 2019, 7, 379.	2.6	30
13	Dynamics and control of air turbines in oscillating-water-column wave energy converters: Analyses and case study. Renewable and Sustainable Energy Reviews, 2019, 112, 571-589.	16.4	55
14	Wave energy conversion and hydrodynamics modelling technologies: A review. Renewable and Sustainable Energy Reviews, 2019, 109, 482-498.	16.4	126
15	Motion and performance of BBDB OWC wave energy converters: I, hydrodynamics. Renewable Energy, 2019, 138, 106-120.	8.9	34
16	Wave Measurement Buoy. , 2019, , 1-9.		1
17	An Analysis of the Potential Benefits of Centralised Predictive Control for Optimal Electrical Power Generation From Wave Energy Arrays. IEEE Transactions on Sustainable Energy, 2018, 9, 1761-1771.	8.8	8
18	Power Takeoff Optimization to Maximize Wave Energy Conversions for Oscillating Water Column Devices. IEEE Journal of Oceanic Engineering, 2018, 43, 36-47.	3.8	24

WANAN SHENG

#	Article	IF	CITATIONS
19	A Comparison of Biradial and Wells Air Turbines on the Mutriku Breakwater OWC Wave Power Plant. , 2017, , .		11
20	A Method for Energy and Resource Assessment of Waves in Finite Water Depths. Energies, 2017, 10, 460.	3.1	28
21	An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths. Energies, 2017, 10, 1188.	3.1	13
22	Challenges and progress in wave energy technologies. Journal of Nuclear Energy Science and Power Generation Technology (discontinued), 2017, 06, .	0.1	0
23	Energy Conversion: A Comparison of Fix- and Self-Referenced Wave Energy Converters. Energies, 2016, 9, 1056.	3.1	11
24	Maximum Wave Energy Conversion by Two Interconnected Floaters. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	2.3	25
25	Wave energy conversion of oscillating water column devices including air compressibility. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	34
26	Integrated methodologies of economics and socio-economics assessments in ocean renewable energy: Private and public perspectives. International Journal of Marine Energy, 2016, 15, 191-200.	1.8	5
27	Maximum theoretical power absorption of connected floating bodies under motion constraints. Applied Ocean Research, 2016, 58, 95-103.	4.1	17
28	Power Takeoff Optimization for Maximizing Energy Conversion of Wave-Activated Bodies. IEEE Journal of Oceanic Engineering, 2016, 41, 529-540.	3.8	35
29	Implementation and Verification of a Wave-to-Wire Model of an Oscillating Water Column With Impulse Turbine. IEEE Transactions on Sustainable Energy, 2016, 7, 546-553.	8.8	35
30	Numerical and experimental studies of water impact on conical point absorber buoys. , 2016, , .		1
31	Wave energy converters: Fix- or self-referenced?. , 2016, , .		1
32	Performance assessment of wave measurements of wave buoys. International Journal of Marine Energy, 2015, 12, 63-76.	1.8	24
33	Numerical study on the dynamics of a two-raft wave energy conversion device. Journal of Fluids and Structures, 2015, 58, 271-290.	3.4	77
34	Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives. Renewable and Sustainable Energy Reviews, 2015, 45, 850-878.	16.4	52
35	A new method for radiation forces for floating platforms in waves. Ocean Engineering, 2015, 105, 43-53.	4.3	27
36	On improving wave energy conversion, part II: Development of latching control technologies. Renewable Energy, 2015, 75, 935-944.	8.9	42

WANAN SHENG

#	Article	IF	CITATIONS
37	On improving wave energy conversion, part I: Optimal and control technologies. Renewable Energy, 2015, 75, 922-934.	8.9	49
38	Performance improvements of mooring systems for wave energy converters. , 2015, , 897-903.		4
39	Assessment of primary energy conversions of oscillating water columns. I. Hydrodynamic analysis. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	24
40	Assessment of primary energy conversions of oscillating water columns. II. Power take-off and validations. Journal of Renewable and Sustainable Energy, 2014, 6, 053114.	2.0	11
41	Physical modelling of wave energy converters. Ocean Engineering, 2014, 84, 29-36.	4.3	72
42	On thermodynamics in the primary power conversion of oscillating water column wave energy converters. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	60
43	Investigation to Air Compressibility of Oscillating Water Column Wave Energy Converters. , 2013, , .		7
44	Assessment of Wave Energy Extraction From Seas: Numerical Validation. Journal of Energy Resources Technology, Transactions of the ASME, 2012, 134, .	2.3	44
45	Experimental Studies of a Floating Cylindrical OWC WEC. , 2012, , .		12
46	Advancement of aerofoil section dynamic stall synthesis methods for rotor design. Aeronautical Journal, 2012, 116, 521-539.	1.6	2
47	On the generation of a helicopter aerodynamic database. Aeronautical Journal, 2011, 115, 103-112.	1.6	25
48	Numerical Studies on Hydrodynamics of a Floating Oscillating Water Column. , 2011, , .		3
49	Applications of Low-Speed Dynamic-Stall Model to the NREL Airfoils. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.8	13
50	On the S809 airfoil's unsteady aerodynamic characteristics. Wind Energy, 2009, 12, 752-767.	4.2	32
51	Prediction of Dynamic Stall Onset for Oscillatory Low-Speed Airfoils. Journal of Fluids Engineering, Transactions of the ASME, 2008, 130, .	1.5	36
52	A Modified Dynamic Stall Model for Low Mach Numbers. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	91
53	Applications of Low Speed Dynamic Stall Model to the NREL Airfoils. , 2008, , .		1
54	On the Return from Aerofoil Stall during Ramp-Down Pitching Motions. , 2007, , .		1

#	Article	IF	CITATIONS
55	A Modified Dynamic Stall Model for Low Mach Numbers. , 2007, , .		6
56	Return from Aerofoil Stall During Ramp-Down Pitching Motions. Journal of Aircraft, 2007, 44, 1856-1864.	2.4	23
57	Improved Dynamic-Stall-Onset Criterion at Low Mach Numbers. Journal of Aircraft, 2007, 44, 1049-1052.	2.4	22
58	A New Stall-Onset Criterion for Low Speed Dynamic-Stall. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 461-471.	1.8	72