
Tania Cristina Leite De Sampaio E Spoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768863/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Developmental genes. , 2022, , 175-186.		0
2	Biomarkers in spinal cord injury: A highlight on prognostic insights. , 2022, , 161-171.		0
3	Evaluation of miRNA Expression in Glioblastoma Stem-Like Cells: A Comparison between Normoxia and Hypoxia Microenvironment. Onco, 2022, 2, 113-128.	0.2	2
4	Effects of longâ€ŧerm exposure to MSTâ€312 on lung cancer cells tumorigenesis: Role of SHH/GLIâ€1 axis. Cell Biology International, 2022, 46, 1468-1479.	1.4	1
5	GANT-61 Induces Autophagy and Apoptosis in Glioblastoma Cells despite their heterogeneity. Cellular and Molecular Neurobiology, 2021, 41, 1227-1244.	1.7	21
6	Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduction and Targeted Therapy, 2021, 6, 45.	7.1	124
7	Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA ₁ receptor. Journal of Neurochemistry, 2021, 156, 499-512.	2.1	30
8	Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. Journal of Cellular Physiology, 2020, 235, 3798-3814.	2.0	22
9	EVALUATION OF MICRORNAS RELATED TO THE SONIC HEDGEHOG PATHWAY IN ORAL CANCER. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 129, e133.	0.2	2
10	Secondary glioblastoma metastasis outside the central nervous system in a young HIV-infected patient. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092343.	1.4	5
11	Neuromechanisms of SARS-CoV-2: A Review. Frontiers in Neuroanatomy, 2020, 14, 37.	0.9	115
12	Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through Sonic hedgehog pathway. Life Sciences, 2020, 257, 118027.	2.0	10
13	Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. IScience, 2020, 23, 100820.	1.9	45
14	GBM-Derived Wnt3a Induces M2-Like Phenotype in Microglial Cells Through Wnt/β-Catenin Signaling. Molecular Neurobiology, 2019, 56, 1517-1530.	1.9	44
15	Glioblastoma Therapy in the Age of Molecular Medicine. Trends in Cancer, 2019, 5, 46-65.	3.8	68
16	Biomarkers in Spinal Cord Injury: from Prognosis to Treatment. Molecular Neurobiology, 2018, 55, 6436-6448.	1.9	59
17	A highlight on Sonic hedgehog pathway. Cell Communication and Signaling, 2018, 16, 11.	2.7	276
18	Microglia/Astrocytes–Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Frontiers in Cellular Neuroscience, 2018, 12, 235.	1.8	119

TANIA CRISTINA LEITE DE

#	Article	IF	CITATIONS
19	The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastoma multiforme tumorigenesis. Cancer Cell International, 2016, 16, 46.	1.8	8
20	Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive Impairment in Sepsis. Molecular Neurobiology, 2015, 52, 653-663.	1.9	121
21	LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Frontiers in Cellular Neuroscience, 2014, 8, 296.	1.8	19
22	Gliomas and the vascular fragility of the blood brain barrier. Frontiers in Cellular Neuroscience, 2014, 8, 418.	1.8	226
23	Glioblastomas and the Special Role of Adhesion Molecules in Their Invasion. , 2014, , 293-315.		1
24	Effects of the flavonoid hesperidin in cerebral cortical progenitors in vitro: indirect action through astrocytes. International Journal of Developmental Neuroscience, 2012, 30, 303-313.	0.7	38
25	Neuron–Astroglial Interactions in Cell-Fate Commitment and Maturation in the Central Nervous System. Neurochemical Research, 2012, 37, 2402-2418.	1.6	29
26	Sphingosine 1â€phosphateâ€primed astrocytes enhance differentiation of neuronal progenitor cells. Journal of Neuroscience Research, 2012, 90, 1892-1902.	1.3	19
27	Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. Journal of Neurochemistry, 2011, 119, 113-123.	2.1	45
28	Hesperidin, a Flavone Glycoside, as Mediator of Neuronal Survival. Neurochemical Research, 2011, 36, 1776-1784.	1.6	51
29	Effects of the flavonoid casticin from Brazilian <i>Croton betulaster</i> in cerebral cortical progenitors in vitro: Direct and indirect action through astrocytes. Journal of Neuroscience Research, 2010, 88, 530-541.	1.3	27
30	Cannabinoids modulate cell survival in embryoid bodies. Cell Biology International, 2010, 34, 399-408.	1.4	11
31	Neuron-Astroglial Interactions in Cell Fate Commitment in the Central Nervous System. , 2010, , 145-170.		0
32	Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-κB activation. Brain Research, 2002, 958, 359-370.	1.1	21
33	Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-β1. European Journal of Neuroscience, 2002, 16, 2059-2069.	1.2	101
34	Modulation of GFAP gene promoter by neurons during development. Anais Da Academia Brasileira De Ciencias, 2000, 72, 439-440.	0.3	0