Xupin Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768848/publications.pdf

Version: 2024-02-01

84 2,760 29 49
papers citations h-index g-index

84 84 84 2923 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Aramid fibril aerogel from steam-exploded PPTA pulp for thermal insulation. Journal of Polymer Research, 2022, 29, 1.	1.2	2
2	Proton Donor-Regulated Mechanically Robust Aramid Nanofiber Aerogel Membranes for High-Temperature Thermal Insulation. ACS Nano, 2022, 16, 5984-5993.	7.3	67
3	In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydrate Polymers, 2022, 288, 119332.	5.1	61
4	Hybrid nanofibrous aerogels for all-in-one solar-driven interfacial evaporation. Journal of Colloid and Interface Science, 2022, 624, 377-384.	5.0	23
5	Banana Fiber Degumming by Alkali Treatment and Ultrasonic Methods. Journal of Natural Fibers, 2022, 19, 12911-12923.	1.7	12
6	Research progress of ultrafine alumina fiber prepared by sol-gel method: A review. Chemical Engineering Journal, 2021, 421, 127744.	6.6	29
7	Adenosine triphosphate@graphene oxide proton channels for proton exchange membranes constructed via electrostatic layer-by-layer deposition. Journal of Membrane Science, 2021, 620, 118880.	4.1	21
8	Nanofiber hybrid membranes: progress and application in proton exchange membranes. Journal of Materials Chemistry A, 2021, 9, 3729-3766.	5.2	48
9	Amino acid-functionalized metal organic framework with excellent proton conductivity for proton exchange membranes. International Journal of Hydrogen Energy, 2021, 46, 1163-1173.	3.8	47
10	Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. Journal of Materials Chemistry A, 2021, 9, 14093-14100.	5.2	84
11	Homogeneous Composite Nonwoven Support for High Temperatureâ€Resistant Separation Membranes. Macromolecular Materials and Engineering, 2021, 306, 2000758.	1.7	1
12	Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes. Reactive and Functional Polymers, 2021, 160, 104840.	2.0	39
13	UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. International Journal of Hydrogen Energy, 2021, 46, 19106-19115.	3.8	26
14	Cellulose/Chitosan Composite Sponge for Efficient Protein Adsorption. Industrial & Engineering Chemistry Research, 2021, 60, 9159-9166.	1.8	13
15	Self-assembly of metal-organic framework onto nanofibrous mats to enhance proton conductivity for proton exchange membrane. International Journal of Hydrogen Energy, 2021, 46, 36415-36423.	3.8	18
16	In situ loading MnO2 onto 3D Aramid nanofiber aerogel as High-Performance lead adsorbent. Journal of Colloid and Interface Science, 2021, 600, 403-411.	5.0	13
17	A highly efficient adsorbent constructed by the in situ assembly of Zeolitic imidazole framework-67 on 3D aramid nanofiber aerogel scaffold. Separation and Purification Technology, 2021, 274, 119054.	3.9	23
18	Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity. Chemical Engineering Journal, 2021, 426, 131931.	6.6	19

#	Article	IF	Citations
19	Study on pore size distribution and thermal conductivity of aramid nanofiber aerogels based on fractal theory. Journal of Applied Physics, 2021, 130, .	1.1	6
20	Fabrication of fibrous microfiltration membrane by pore filling of nanofibers into poly(ethylene) Tj ETQq0 0 0 rgBT	「/Overloc	k 10 Tf 50 70
21	Ordered proton channels constructed from deoxyribonucleic acid-functionalized graphene oxide for proton exchange membranes via electrostatic layer-by-layer deposition. International Journal of Hydrogen Energy, 2020, 45, 27772-27778.	3.8	16
22	Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption. Microporous and Mesoporous Materials, 2020, 308, 110544.	2.2	19
23	Bio-analogue l-lysine lined arrangement on nanofibers with superior proton-conduction for proton exchange membrane. Solid State Ionics, 2020, 348, 115289.	1.3	7
24	UV-crosslinked Solution Blown PVDF Nanofiber Mats for Protective Applications. Fibers and Polymers, 2020, 21, 489-497.	1.1	13
25	Biofunctionalized nanofiber hybrid proton exchange membrane based on acid-base ion-nanochannels with superior proton conductivity. Journal of Power Sources, 2020, 452, 227839.	4.0	24
26	Zeolitic imidazolate framework decorated on 3D nanofiber network towards superior proton conduction for proton exchange membrane. Journal of Membrane Science, 2020, 601, 117914.	4.1	31
27	Enhancing proton conductivity of proton exchange membrane with SPES nanofibers containing porous organic cage. Polymers for Advanced Technologies, 2020, 31, 1571-1580.	1.6	8
28	Fabrication of electrospun sulfonated poly(ether sulfone) nanofibers with amino modified SiO2 nanosphere for optimization of nanochannels in proton exchange membrane. Solid State Ionics, 2020, 349, 115300.	1.3	27
29	In Situ Synthesis of Au Nanoparticles on Viscose Cellulose Sponges for Antibacterial Activities. Polymers, 2019, 11, 1281.	2.0	8
30	Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes. European Polymer Journal, 2019, 119, 327-334.	2.6	26
31	Amino acid clusters supported by cellulose nanofibers for proton exchange membranes. Journal of Power Sources, 2019, 438, 227035.	4.0	30
32	Hot-Pressed Wet-Laid Polyethylene Terephthalate Nonwoven as Support for Separation Membranes. Polymers, 2019, 11, 1547.	2.0	13
33	Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21865-21873.	4.0	32
34	Solution Blown Nylon 6 Nanofibrous Membrane as Scaffold for Nanofiltration. Polymers, 2019, 11, 364.	2.0	10
35	Bio-inspired amino-acid-functionalized cellulose whiskers incorporated into sulfonated polysulfone for proton exchange membrane. Journal of Power Sources, 2019, 409, 123-131.	4.0	54
36	A review on anode for lithium-sulfur batteries: Progress and prospects. Chemical Engineering Journal, 2018, 347, 343-365.	6.6	227

#	Article	IF	CITATIONS
37	Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells. Carbohydrate Polymers, 2018, 184, 299-306.	5.1	82
38	Exploration of Blood Coagulation of <i>N</i> Alkyl Chitosan Nanofiber Membrane in Vitro. Biomacromolecules, 2018, 19, 731-739.	2.6	51
39	Hierarchical fibrous microfiltration membranes by self-assembling DBS nanofibrils in solution-blown nanofibers. Soft Matter, 2018, 14, 8879-8882.	1.2	7
40	Solution Blowing of Polyacrylonitrile Nanofiber Mats Containing Fluoropolymer for Protective Applications. Fibers and Polymers, 2018, 19, 775-781.	1.1	13
41	Preparation and Properties of sc-PLA/PMMA Transparent Nanofiber Air Filter. Polymers, 2018, 10, 996.	2.0	30
42	Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane. Polymer, 2018, 156, 179-185.	1.8	26
43	Self-Assembly DBS Nanofibrils on Solution-Blown Nanofibers as Hierarchical Ion-Conducting Pathway for Direct Methanol Fuel Cells. Polymers, 2018, 10, 1037.	2.0	6
44	Novel proton-conductive nanochannel membranes with modified SiO2 nanospheres for direct methanol fuel cells. Journal of Solid State Electrochemistry, 2018, 22, 3475-3484.	1.2	14
45	Preparation and BSA Adsorption Behavior of Chitosan-arginine Based Nanofiber Membranes. Fibers and Polymers, 2018, 19, 941-948.	1.1	11
46	Polyvinyl Alcohol-derived carbon nanofibers/carbon nanotubes/sulfur electrode with honeycomb-like hierarchical porous structure for the stable-capacity lithium/sulfur batteries. Journal of Power Sources, 2017, 346, 1-12.	4.0	48
47	Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels. Ionics, 2017, 23, 2359-2366.	1.2	5
48	Development of amino acid-modified PET/PA6 segmented pie bicomponent spunbonded microfiber nonwoven for bilirubin affinity adsorption. Fibers and Polymers, 2017, 18, 633-640.	1.1	7
49	Solution blown biofunctionalized poly(vinylidene fluoride) nanofibers for application in proton exchange membrane fuel cells. Electrochimica Acta, 2017, 258, 24-33.	2.6	32
50	Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels. Journal of Power Sources, 2017, 365, 92-97.	4.0	22
51	Emulsion-Blow Spun Self-Sustained Crystalline \hat{I}^2 -Silicon Carbide (SiC) Fiber Mat and Its Conductivity Property. Transactions of the Indian Ceramic Society, 2017, 76, 159-164.	0.4	4
52	Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. Journal of Power Sources, 2017, 340, 201-209.	4.0	128
53	Solution Blown Silicon Carbide Porous Nanofiber Membrane as Electrode Materials for Supercapacitors. Electrochimica Acta, 2016, 207, 257-265.	2.6	39
54	Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers and Polymers, 2016, 17, 778-788.	1.1	6

#	Article	IF	Citations
55	Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing. Fibers and Polymers, 2016, 17, 205-211.	1.1	30
56	Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications. Carbohydrate Polymers, 2016, 140, 195-201.	5.1	38
57	Solution blown sulfonated poly(ether sulfone)/poly(ether sulfone) nanofiberâ€Nafion composite membranes for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
58	Solutionâ€blown SPEEK/POSS nanofiber–nafion hybrid composite membranes for direct methanol fuel cells. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
59	Generation of nanofibers via electrostaticâ€Inductionâ€assisted solution blow spinning. Journal of Applied Polymer Science, 2015, 132, .	1.3	19
60	Solution blowing of activated carbon nanofibers for phenol adsorption. RSC Advances, 2015, 5, 5801-5808.	1.7	26
61	A comparative study of alumina fibers prepared by electro-blown spinning (EBS) and solution blowing spinning (SBS). Materials Letters, 2015, 160, 533-536.	1.3	41
62	Solution-blown core–shell hydrogel nanofibers for bovine serum albumin affinity adsorption. RSC Advances, 2015, 5, 83232-83238.	1.7	16
63	Solution blown sulfonated poly(ether ether ketone) nanofiber–Nafion composite membranes for proton exchange membrane fuel cells. RSC Advances, 2015, 5, 4934-4940.	1.7	63
64	Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydrate Polymers, 2014, 101, 1116-1121.	5.1	143
65	Manufacture and performance of O-carboxymethyl chitosan sodium salt/cellulose fibers in N-methylmorpholine-N-oxide system. Fibers and Polymers, 2014, 15, 1575-1582.	1.1	2
66	Fabrication of ZrO2 ceramic fiber mats by solution blowing process. Ceramics International, 2014, 40, 15013-15018.	2.3	39
67	Solution blowing of continuous carbon nanofiber yarn and its electrochemical performance for supercapacitors. Chemical Engineering Journal, 2014, 237, 308-311.	6.6	62
68	Coaxial solution blown core-shell structure nanofibers for drug delivery. Macromolecular Research, 2013, 21, 346-348.	1.0	11
69	Solution blowing nylon 6 nanofiber mats for air filtration. Fibers and Polymers, 2013, 14, 1485-1490.	1.1	58
70	Solution blown aligned carbon nanofiber yarn as supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2013, 24, 4769-4773.	1.1	29
71	Solution blowing of ZnO nanoflake-encapsulated carbon nanofibers as electrodes for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 13779.	5 . 2	90
72	Solution blown nanofibrous membrane for microfiltration. Journal of Membrane Science, 2013, 429, 66-70.	4.1	76

#	Article	IF	CITATIONS
73	Preparation of Polyacrylonitrile Nanofibers by Solution Blowing Process. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	0.5	10
74	Solution Blowing of Silicon Carbide nanofiber and its thermal stability. Science of Advanced Materials, 2013, 5, 209-215.	0.1	14
75	Solution blowing of submicron-scale cellulose fibers. Carbohydrate Polymers, 2012, 90, 982-987.	5.1	106
76	Antibacterial Finishing of Tencel/Cotton Nonwoven Fabric Using Ag Nanoparticles-Chitosan Composite. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	0.5	5
77	Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system. Carbohydrate Polymers, 2012, 89, 104-110.	5.1	15
78	Manufacture and properties of cellulose/O-hydroxyethyl chitosan blend fibers. Carbohydrate Polymers, 2010, 81, 541-544.	5.1	32
79	Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydrate Polymers, 2010, 82, 524-527.	5.1	116
80	Preparation and properties of 2-(2-aminoethoxy) ethyl chitosan/cellulose fiber using N-methylmorpholine-N-oxide process. Fibers and Polymers, 2008, 9, 400-404.	1.1	10
81	Blend films of O-carboxymethyl chitosan and cellulose in N-methylmorpholine-N-oxide monohydrate. Journal of Applied Polymer Science, 2006, 102, 4601-4605.	1.3	15
82	Rheological study onO?carboxymethylated chitosan/cellulose polyblends from LiCl/N,N-dimethylacetamide solution. Journal of Applied Polymer Science, 2003, 88, 1719-1725.	1.3	7
83	Manufacture and properties of chitosan/N,O-carboxymethylated chitosan/viscose rayon antibacterial fibers. Journal of Applied Polymer Science, 2002, 84, 2049-2059.	1.3	33
84	Optimization of the preparation process of electrostatic-solution blow spinning nanofiber yarn using response surface methodology. Textile Reseach Journal, 0, , 004051752211011.	1.1	1