
Scott A Dee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of viral survival in representative volumes of feed and feed ingredients during longâ€distance commercial transport across the continental United States. Transboundary and Emerging Diseases, 2022, 69, 149-156.	1.3	10
2	Stability of Senecavirus A in animal feed ingredients and infection following consumption of contaminated feed. Transboundary and Emerging Diseases, 2022, 69, 88-96.	1.3	15
3	Monoglyceride reduces viability of porcine epidemic diarrhoea virus in feed and prevents disease transmission to postâ€weaned piglets. Transboundary and Emerging Diseases, 2022, 69, 121-127.	1.3	10
4	Evaluation of the Impact of Antimicrobial Use Protocols in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine on Phenotypic Antimicrobial Resistance Patterns. Applied and Environmental Microbiology, 2022, 88, AEM0097021.	1.4	4
5	Feed: A new pathway for the domestic and transboundary spread of viral pathogens of veterinary significance. Transboundary and Emerging Diseases, 2022, 69, 1-3.	1.3	9
6	Control Practices for Safeguarding Agricultural and Environmental Biosecurity Before Entry Points. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 76-119.	0.1	0
7	Evaluating the effect of temperature on viral survival in plantâ€based feed during storage. Transboundary and Emerging Diseases, 2022, 69, .	1.3	7
8	Survival of swine pathogens in compost formed from preprocessed carcasses. Transboundary and Emerging Diseases, 2021, 68, 2239-2249.	1.3	12
9	Use of a demonstration project to evaluate viral survival in feed: Proof of concept. Transboundary and Emerging Diseases, 2021, 68, 248-252.	1.3	8
10	Mitigating the risk of African swine fever virus in feed with antiâ€viral chemical additives. Transboundary and Emerging Diseases, 2021, 68, 477-486.	1.3	26
11	An evaluation of additives for mitigating the risk of virusâ€contaminated feed using an iceâ€block challenge model. Transboundary and Emerging Diseases, 2021, 68, 833-845.	1.3	21
12	The risk and mitigation of footâ€andâ€mouth disease virus infection of pigs through consumption of contaminated feed. Transboundary and Emerging Diseases, 2021, , .	1.3	8
13	Quantification of soyaâ€based feed ingredient entry from ASFVâ€positive countries to the United States by ocean freight shipping and associated seaports. Transboundary and Emerging Diseases, 2020, 68, 2603-2609.	1.3	10
14	The risk of viral transmission in feed: What do we know, what do we do?. Transboundary and Emerging Diseases, 2020, 67, 2365-2371.	1.3	18
15	Quantifying Individual Response to PRRSV Using Dynamic Indicators of Resilience Based on Activity. Frontiers in Veterinary Science, 2020, 7, 325.	0.9	14
16	Stability of classical swine fever virus and pseudorabies virus in animal feed ingredients exposed to transpacific shipping conditions. Transboundary and Emerging Diseases, 2020, 67, 1623-1632.	1.3	28
17	Risks to animal health associated with imported feed ingredients. Journal of the American Veterinary Medical Association, 2019, 254, 790-791.	0.2	17
18	Half-Life of African Swine Fever Virus in Shipped Feed. Emerging Infectious Diseases, 2019, 25, 2261-2263.	2.0	56

SCOTT A DEE

#	Article	IF	CITATIONS
19	A randomized controlled trial to evaluate performance of pigs raised in antibiotic-free or conventional production systems following challenge with porcine reproductive and respiratory syndrome virus. PLoS ONE, 2018, 13, e0208430.	1.1	21
20	Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE, 2018, 13, e0194509.	1.1	139
21	Detection of the Emerging Picornavirus Senecavirus A in Pigs, Mice, and Houseflies. Journal of Clinical Microbiology, 2016, 54, 1536-1545.	1.8	76
22	Modeling the transboundary risk of feed ingredients contaminated with porcine epidemic diarrhea virus. BMC Veterinary Research, 2016, 12, 51.	0.7	77
23	An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porcine Health Management, 2015, 1, 9.	0.9	56
24	An evaluation of a liquid antimicrobial (Sal CURB®) for reducing the risk of porcine epidemic diarrhea virus infection of na¬ve pigs during consumption of contaminated feed. BMC Veterinary Research, 2014, 10, 220.	0.7	34
25	An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naìve pigs following consumption via natural feeding behavior: proof of concept. BMC Veterinary Research, 2014, 10, 176.	0.7	145
26	Evaluation of the Long-Term Effect of Air Filtration on the Occurrence of New PRRSV Infections in Large Breeding Herds in Swine-Dense Regions. Viruses, 2012, 4, 654-662.	1.5	23