List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/176861/publications.pdf Version: 2024-02-01

Ρλοιο Ομλοφειμ

#	Article	IF	CITATIONS
1	Nanocrystals perovskites photocatalyzed singlet oxygen generation for light-driven organic reactions. Photochemical and Photobiological Sciences, 2022, 21, 613-624.	2.9	5
2	Protein Allostery and Ligand Design: Computational Design Meets Experiments to Discover Novel Chemical Probes. Journal of Molecular Biology, 2022, 434, 167468.	4.2	10
3	Towards intelligent packaging: BCP-EVOH@ optode for milk freshness measurement. Talanta, 2022, 241, 123230.	5.5	18
4	pH-Sensitive Sensors at Work on Poultry Meat Degradation Detection: From the Laboratory to the Supermarket Shelf. AppliedChem, 2022, 2, 128-141.	1.0	2
5	Nitrosocarbonyl Carbohydrate Derivatives: Hetero Diels–Alder and Ene Reaction Products for Useful Organic Synthesis. Synthesis, 2021, 53, 574-586.	2.3	1
6	g-C ₃ N ₄ /metal halide perovskite composites as photocatalysts for singlet oxygen generation processes for the preparation of various oxidized synthons. Catalysis Science and Technology, 2021, 11, 2292-2298.	4.1	5
7	Turn-folding in fluorescent anthracene-substituted cyclopenta[d]isoxazoline short peptides. RSC Advances, 2021, 11, 19551-19559.	3.6	0
8	EVOH-Based pH-Sensitive Optode Array and Chemometrics: From Naked-Eye Analysis to Predictive Modeling to Detect Milk Freshness. ACS Food Science & Technology, 2021, 1, 819-828.	2.7	10
9	Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics, 2021, 9, 56.	2.7	19
10	Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs ₃ Bi ₂ Br ₉ Leadâ€Free Perovskite Derivative by gâ€C ₃ N ₄ Composite Engineering. Advanced Functional Materials, 2021, 31, 2104428.	14.9	53
11	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021, 9, 9899-9906.	5.5	28
12	Naked-Eye Food Freshness Detection: Innovative Polymeric Optode for High-Protein Food Spoilage Monitoring. ACS Food Science & Technology, 2021, 1, 165-175.	2.7	22
13	Photocatalyzed Generation of Nitrosocarbonyl Intermediates Under Solar Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1443-1447.	2.4	7
14	Development of a Dye-Based Device to Assess Poultry Meat Spoilage. Part I: Building and Testing the Sensitive Array. Journal of Agricultural and Food Chemistry, 2020, 68, 12702-12709.	5.2	16
15	Development of a Dye-Based Device to Assess the Poultry Meat Spoilage. Part II: Array on Act. Journal of Agricultural and Food Chemistry, 2020, 68, 12710-12718.	5.2	18
16	9-Anthraldehyde oxime: a synthetic tool for variable applications. Monatshefte Für Chemie, 2020, 151, 1643-1658.	1.8	6
17	5â€Hydroxyâ€isoxazolidine: A New Synthetic Approach to a Privileged Heterocycle for Organic Synthesis. ChemistrySelect, 2020, 5, 5367-5373.	1.5	1
18	DEAE-cellulose-catalyzed synthesis of 5-hydroxy-isoxazolidines and their synthetic uses towards nucleoside analogues. Arkivoc, 2020, 2020, 73-83.	0.5	2

#	Article	IF	CITATIONS
19	Colorimetric Sensor Array for Monitoring, Modelling and Comparing Spoilage Processes of Different Meat and Fish Foods. Foods, 2020, 9, 684.	4.3	44
20	A practical synthesis of (3-(phenanthren-9-yl)-4,5-dihydroisoxazol-5-yl)methyl (tert-butoxycarbonyl)-L-alaninate. Arkivoc, 2020, 2020, 66-72.	0.5	1
21	Highly Tunable Emission by Halide Engineering in Lead-Free Perovskite-Derivative Nanocrystals: The Cs2SnX6 (X = Cl, Br, Br/l, I) System. Frontiers in Chemistry, 2020, 8, 35.	3.6	35
22	Reactions of 1,2,4â€Oxadiazole[4,5―a]piridinium Salts with Alcohols: the Synthesis of Alkoxybutadienyl 1,2,4â€Oxadiazoles. ChemistryOpen, 2020, 9, 195-199.	1.9	1
23	N,O â€Nucleoside Analogues: Metabolic and Apoptotic Activity. ChemistryOpen, 2020, 9, 528-537.	1.9	1
24	Rational Design of Allosteric and Selective Inhibitors of the Molecular Chaperone TRAP1. Cell Reports, 2020, 31, 107531.	6.4	62
25	Fluorescent Probes from Aromatic Polycyclic Nitrile Oxides: Isoxazoles versus Dihydroâ€1λ ³ ,3,2λ ⁴ â€Oxazaborinines. ChemistryOpen, 2019, 8, 770-780.	1.9	7
26	Stapled Peptides—A Useful Improvement for Peptide-Based Drugs. Molecules, 2019, 24, 3654.	3.8	90
27	Electrocyclic Ringâ€Opening of 1,2,4â€Oxadiazole[4,5â€ <i>a</i>]piridinium Chloride: a New Route to 1,2,4â€Oxadiazole Dienamino Compounds. ChemistryOpen, 2019, 8, 1209-1221.	1.9	3
28	Facile anion-exchange reaction in mixed-cation lead bromide perovskite nanocrystals. RSC Advances, 2019, 9, 13263-13268.	3.6	7
29	Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): synthesis, characterization, aging and hydrogen photogeneration of the MA _{1â^*x} DMA _x SnBr ₃ system. Journal of Materials Chemistry C, 2019, 7, 7020-7026.	5.5	41
30	Scope and Limitations of Boron Fluorescent Complexes from Stable Nitrile Oxides in ABPP Assays. ACS Omega, 2019, 4, 7766-7774.	3.5	7
31	Cycloaddition reactions for antiviral compounds. , 2019, , 1-83.		3
32	Cycloaddition reactions for anticancer compounds. , 2019, , 85-152.		4
33	g-C ₃ N ₄ - Singlet Oxygen Made Easy for Organic Synthesis: Scope and Limitations. ACS Sustainable Chemistry and Engineering, 2019, 7, 8176-8182.	6.7	50
34	The Easy Approach to N-Hydroxy-N-cycloalkenylamides through Nitrosocarbonyl Ene Reactions to Cycloalkenes: Valuable Compounds for Antiviral Syntheses. Synthesis, 2019, 51, 1383-1390.	2.3	2
35	Investigation of Dimethylammonium Solubility in MAPbBr ₃ Hybrid Perovskite: Synthesis, Crystal Structure, and Optical Properties. Inorganic Chemistry, 2019, 58, 944-949.	4.0	22
36	Enhanced hydrogen photogeneration by bulk g-C ₃ N ₄ through a simple and efficient oxidation route. Dalton Transactions, 2018, 47, 6772-6778.	3.3	18

#	Article	IF	CITATIONS
37	Forty Years after "Heterodiene Syntheses with α,β-Unsaturated Carbonyl Compoundsâ€I Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chemical Reviews, 2018, 118, 2080-2248.	47.7	103
38	Ene Reactions of Nitrosocarbonyl Intermediates with Trisubstituted Cycloalkenes: "Cis Effect―and Steric and Conformational Factors Drive the Selectivity. ACS Omega, 2018, 3, 682-690.	3.5	5
39	Cyclopenta[<i>d</i>]isoxazoline β-Turn Mimics: Synthetic Approach, Turn Driving Force, Scope, and Limitations. ACS Omega, 2018, 3, 13551-13558.	3.5	3
40	Exploring the Limits of Three-Dimensional Perovskites: The Case of FAPb _{1–<i>x</i>} Sn _{<i>x</i>} Br ₃ . ACS Energy Letters, 2018, 3, 1353-1359.	17.4	31
41	Ene Reaction of Nitrosocarbonyl Mesitylene with the Cinnamyl Alcohol: Metabolic Activity and Apoptosis of the Synthetized 6-Chloropurine N,O-Nucleoside Analogues. ACS Omega, 2018, 3, 7621-7629.	3.5	5
42	Drug Delivery Systems for Chemotherapeutics through Selected Polysaccharidic Vehicles. Current Organic Chemistry, 2018, 22, 1157-1192.	1.6	4
43	Generation and Trapping of Nitrosocarbonyl Intermediates. Chemical Reviews, 2017, 117, 2108-2200.	47.7	62
44	N,O-Nucleosides from Ene Reaction of (Nitrosocarbonyl)mesitylene with Crotyl Alcohol: Selectivity, Scope, and Limitations. Synthesis, 2017, 49, 1972-1982.	2.3	6
45	Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA _{1â°x} MA _x SnBr ₃ mixed system. Journal of Materials Chemistry A, 2017, 5, 9391-9395.	10.3	65
46	The FA _{1–<i>x</i>} MA _{<i>x</i>} PbI ₃ System: Correlations among Stoichiometry Control, Crystal Structure, Optical Properties, and Phase Stability. Journal of Physical Chemistry C, 2017, 121, 8746-8751.	3.1	27
47	The hydrogen bond directing effect in nitrile oxide cycloadditions to allylic substituted cyclopentenes. Tetrahedron, 2017, 73, 2602-2613.	1.9	4
48	Nitrile oxide cycloaddition to 4-hydroxy-2-cyclopentenone: Solvent effect and selectivity. Tetrahedron Letters, 2017, 58, 3385-3389.	1.4	3
49	Solid-phase supported nitrosocarbonyl intermediates: Old scope and new limitations in the organic synthesis. Tetrahedron Letters, 2017, 58, 3271-3275.	1.4	1
50	Pericyclic Reactions for Antiâ€HPV Antivirals: Unconventional Nucleoside Analogue Synthesis via Nitrosocarbonyl Chemistry. ChemistrySelect, 2017, 2, 10340-10346.	1.5	3
51	Pericyclic Reactions for Antivirals: Synthesis of 4-Bromo-N-[(1R*,4S*)-4- hydroxy-2-cyclohexen-1-yl]-2-thiazolecarboxamide. Letters in Organic Chemistry, 2017, 13, 757-763.	0.5	4
52	4â€Heterosubstituted Cyclopentenone Antiviral Compounds: Synthesis, Mechanism, and Antiviral Evaluation. European Journal of Organic Chemistry, 2016, 2016, 983-991.	2.4	13
53	High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite. Journal of Applied Physics, 2016, 119, .	2.5	78
54	FA _{0.8} MA _{0.2} Sn _{<i>x</i>} Pb _{1–<i>x</i>} I ₃ Hybrid Perovskite Solid Solution: Toward Environmentally Friendly, Stable, and Near-IR Absorbing Materials. Inorganic Chemistry, 2016, 55, 12752-12757.	4.0	11

#	ARTICLE	IF	CITATIONS
55	Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium,) Tj ETQq1 2016, 240, 55-60.	1 0.7843 2.9	14 rgBT /O 73
56	Paralipomena of the Isoxazoline Carbocyclic Nucleoside Analogs. ChemistrySelect, 2016, 1, 1496-1502.	1.5	1
57	Carboxymethylinulin–Chitosan Nanoparticles for the Delivery of Antineoplastic Mitoxantrone. ChemMedChem, 2016, 11, 2436-2444.	3.2	11
58	Shortâ€Range Order of Methylammonium and Persistence of Distortion at the Local Scale in MAPbBr ₃ Hybrid Perovskite. Angewandte Chemie - International Edition, 2016, 55, 14320-14324.	13.8	42
59	Shortâ€Range Order of Methylammonium and Persistence of Distortion at the Local Scale in MAPbBr ₃ Hybrid Perovskite. Angewandte Chemie, 2016, 128, 14532-14536.	2.0	5
60	Fluorescent Probes from Stable Aromatic Nitrile Oxides. European Journal of Organic Chemistry, 2016, 2016, 821-829.	2.4	13
61	Design, Synthesis, and Conformational Analysis of Proposed β-Turn Mimics from Isoxazoline-Cyclopentane Aminols. Chemistry - A European Journal, 2015, 21, 16374-16378.	3.3	8
62	Synthesis and antiviral activity of anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron Letters, 2015, 56, 1986-1990.	1.4	12
63	Enantioselective Catalytic Reactions with <i>N</i> -Acyliden Penta-atomic Aza-heterocycles. Heterocycles as Masked Bricks To Build Chiral Scaffolds. Chemical Reviews, 2015, 115, 9922-9980.	47.7	57
64	CH ₃ NH ₃ Sn _{<i>x</i>} Pb _{1–<i>x</i>} Br ₃ Hybrid Perovskite Solid Solution: Synthesis, Structure, and Optical Properties. Inorganic Chemistry, 2015, 54, 8893-8895.	4.0	55
65	Syntheses of Isoxazoline-Carbocyclic Nucleosides and Their Antiviral Evaluation: A Standard Protocol. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	5
66	#Nitrosocarbonyls 1: Antiviral Activity of <i>N</i> -(4-Hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the Influenza A Virus H1N1. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	4
67	(2S)-[3-(Anthracen-9-yl)-4,5-dihydroisoxazol-5-yl]methyl 2-[(tert-butoxycarbonyl)amino]propanoate. MolBank, 2014, 2014, M837.	0.5	1
68	Enantioselectively-Catalyzed Reactions with (<i>E</i>)-2-Alkenoyl-pyridines, Their <i>N</i> -Oxides, and the Corresponding Chalcones. Chemical Reviews, 2014, 114, 6081-6129.	47.7	51
69	Three-Dimensional Heterocycles: New Uracil-Based Structures Obtained by Nucleophilic Substitution at the sp2 Carbon of Bromoisoxazoline. Molecules, 2014, 19, 8661-8678.	3.8	4
70	HNO made-easy from photochemical cycloreversion of novel 3,5-heterocyclic disubstituted 1,2,4-oxadiazole-4-oxides. Tetrahedron, 2013, 69, 7387-7394.	1.9	14
71	From Cyclopentadiene to Isoxazolineâ€Carbocyclic Nucleosides; Synthesis of Highly Active Inhibitors of Influenza A Virus H1N1. European Journal of Organic Chemistry, 2013, 2013, 4655-4665.	2.4	12
72	<i>N</i> , <i>O</i> -Nucleosides from Ene Reactions of Nitrosocarbonyl Intermediates with the 3-Methyl-2-buten-1-ol. Journal of Organic Chemistry, 2013, 78, 516-526.	3.2	18

#	Article	IF	CITATIONS
73	Syntheses of New Carbanucleosides by Pericyclic Reactions. European Journal of Organic Chemistry, 2013, 2013, 3835-3846.	2.4	15
74	Substituted (<i>E</i>)-2-Oxo-3-butenoates: Reagents for Every Enantioselectively-Catalyzed Reaction. Chemical Reviews, 2013, 113, 5924-5988.	47.7	75
75	From the Ene Reaction of Nitrosocarbonyl Intermediates with 3-Methylbut-2-en-1-ol, a New Class of Purine N,O-Nucleoside Analogues. Synthesis, 2013, 45, 1414-1420.	2.3	6
76	A new life for nitrosocarbonyls in pericyclic reactions. Arkivoc, 2013, 2013, 418-423.	0.5	11
77	lminium Ions as Dienophiles in Azaâ€Điels–Alder Reactions: A Closer Look. Chemistry - A European Journal, 2012, 18, 12554-12582.	3.3	53
78	The Chemoselective Reduction of Isoxazolinel ³ -Lactams Through Iminium Aza-Diels-Alder Reactions: A Short-Cut Synthesis of Aminols as Valuable Intermediates towards Nucleoside Derivatives. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	1
79	Synthesis of novel anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron, 2012, 68, 1384-1392.	1.9	21
80	Synthesis and molecular modeling of novel dihydroxycyclopentane-carbonitrile nor-nucleosides by bromonitrile oxide 1,3-dipolar cycloaddition. Tetrahedron, 2012, 68, 1845-1852.	1.9	17
81	1,2,4â€Oxadiazole 4â€Oxides as Nitrones in 1,3â€Dipolar Cycloaddition Reactions to Vinyl Ethers. European Journal of Organic Chemistry, 2012, 2012, 1418-1425.	2.4	4
82	Structure Determination of 8-Benzyl-5-phenyl-3-oxa-4,8-diaza-tricyclo[5.2.1.02,6]dec-4-ene and 1-(9-Ethoxy-5-phenyl-3-oxa-4,8-diaza-tricyclo[5.2.1.02,6]dec-4-en-8-yl)-ethanone: Their Synthesis, Chemical Relationship and Comparison with Similar Compounds. Journal of Chemical Crystallography, 2012, 42, 43-66.	1.1	2
83	RuO4-catalyzed oxidation reactions of isoxazolino-2-azanorbornane derivatives: a short-cut synthesis of tricyclic lactams and peptidomimetic γ-amino acids. Tetrahedron, 2011, 67, 1907-1914.	1.9	13
84	RuO4-Catalyzed Oxidation Reactions of N-Alkylisoxazolino-2-azanorbornane Derivatives: An Expeditious Route to Tricyclic Î ³ -Lactams. Synthesis, 2011, 2011, 2165-2174.	2.3	2
85	RuO4-Catalyzed Oxidation Reactions of N-Alkylisoxazolino-2-azanorbornane Derivatives: An Expeditious Route to Tricyclic Î ³ -Lactams. Synthesis, 2011, 2011, e2-e2.	2.3	Ο
86	Synthesis of new 2-substituted 3-amino-4-hydroxymethylthiophenes through intramolecular nitrile oxide cycloaddition processes and N,O-bond cleavage. Arkivoc, 2011, 2011, 270-285.	0.5	5
87	Nonbonded Interactions Tune Selectivities in Cycloadditions to 2,3â€Dioxabicyclo[2.2.2]octâ€5â€ene. European Journal of Organic Chemistry, 2010, 2010, 6600-6608.	2.4	3
88	Conversion of a nitrosocarbonyl hetero Diels–Alder cycloadduct to useful isoxazoline-carbocyclic aminols. Tetrahedron, 2009, 65, 10679-10684.	1.9	14
89	The Remarkable Cis Effect in the Ene Reactions of Nitrosocarbonyl Intermediates. Journal of Organic Chemistry, 2009, 74, 2301-2310.	3.2	20
90	Palladium(0)-catalyzed syntheses of cyclopentenyl-nucleoside analogues. Arkivoc, 2009, 2009, 183-200.	0.5	3

#	Article	IF	CITATIONS
91	From cyclopentadiene to isoxazoline-carbocyclic nucleosides: a rapid access to biological molecules through aza-Diels–Alder reactions. Tetrahedron, 2008, 64, 3541-3547.	1.9	17
92	From 1,3-cyclohexadiene through nitrosocarbonyl chemistry, the synthesis of pyrimidine isoxazoline-carbocyclic nucleosides. Tetrahedron, 2008, 64, 7312-7317.	1.9	12
93	Synthesis and Synthetic Applications of 1,2,4-Oxadiazole-4-Oxides. Current Organic Chemistry, 2007, 11, 959-986.	1.6	31
94	Variable Markovnikov Orientation and "cis Effect―in Ene Reactions of Nitrosocarbonyl Intermediates. Journal of Organic Chemistry, 2007, 72, 1807-1810.	3.2	16
95	A Straightforward Synthesis of Isoxazolineâ€Based Carbocyclic Nucleosides from 1,3â€Cyclohexadiene through Nitrosocarbonyl Chemistry. European Journal of Organic Chemistry, 2007, 2007, 6003-6015.	2.4	25
96	Isoxazoline-carbocyclic aminols for nucleoside synthesis through aza-Diels–Alder reactions. Tetrahedron, 2006, 62, 7370-7379.	1.9	20
97	Crystal structure and DFT calculations of 3,8-diphenyl-3a,4,5,5a,8a,8b-hexahydro-benzo[1,2-d: 3,4-d′]diisoxazole, C20H18N2O2. Journal of Molecular Structure, 2005, 743, 135-143.	3.6	3
98	Crystal structure of 4-(6-chloro-purin-9-yl)-3-phenyl-4,5,6,6a-tetrahydro-3a H-cyclopenta[d]isoxazol-6-ol, C17H14N5O2Cl. Journal of Chemical Crystallography, 2005, 35, 701-707.	1.1	1
99	Photochemical Generation of Nitrosocarbonyl Intermediates on Solid Phase:Â Synthons toward Hetero Dielsâ ^{~^} Alder and Ene Adducts through Photocleavage. ACS Combinatorial Science, 2005, 7, 887-892.	3.3	29
100	The Three Corrugated Surfaces of 1,4-Divinyltetramethylene Diradical Intermediates and Their Connections to 1,2-Divinylcyclobutane, 4-Vinylcyclohexene, 1,5-Cyclooctadiene, and Two Butadienes. Journal of Organic Chemistry, 2005, 70, 2994-3008.	3.2	17
101	4′-α-C-Branched N,O-nucleosides: synthesis and biological properties. Bioorganic and Medicinal Chemistry, 2004, 12, 3903-3909.	3.0	10
102	From cyclopentadiene to isoxazoline–carbocyclic nucleosides: a rapid access to biological molecules through nitrosocarbonyl chemistry. Tetrahedron, 2004, 60, 3643-3651.	1.9	37
103	Crystal structure of 1-phenylamino-2-phenyl-4-p-chlorophenylimidazole, C21H16N3Cl. Journal of Chemical Crystallography, 2003, 33, 913-917.	1.1	0
104	Pyridine-2,6-bis(oxazolines), Helpful Ligands for Asymmetric Catalysts. ChemInform, 2003, 34, no.	0.0	1
105	A Bispericyclic Transition Structure Allows for Efficient Relief of Antiaromaticity Enhancing Reactivity and Endo Stereoselectivity in the Dimerization of the Fleeting Cyclopentadienone. Journal of Organic Chemistry, 2003, 68, 6035-6038.	3.2	55
106	Pyridine-2,6-bis(oxazolines), Helpful Ligands for Asymmetric Catalysts. Chemical Reviews, 2003, 103, 3119-3154.	47.7	415
107	6-Chloropyridazin-3-yl Derivatives Active as Nicotinic Agents:Â Synthesis, Binding, and Modeling Studiesâ€. Journal of Medicinal Chemistry, 2002, 45, 4011-4017.	6.4	27
108	An Unexpected Bispericyclic Transition Structure Leading to 4+2 and 2+4 Cycloadducts in theEndoDimerization of Cyclopentadiene. Journal of the American Chemical Society, 2002, 124, 1130-1131.	13.7	171

#	Article	IF	CITATIONS
109	Solid-Supported Nitrile Oxides as Stable and Valuable Reactive Intermediates. European Journal of Organic Chemistry, 2002, 2002, 1175-1183.	2.4	29
110	Intra- and Intermolecular Hydrogen Bonding Effects in Cycloadditions between Nitrile Oxides and 4-Benzoylamino-2-cyclopenten-1-ol and Its Derivatives. European Journal of Organic Chemistry, 2002, 2002, 2058.	2.4	19
111	A soluble polymer-bound Evans' chiral auxiliary: synthesis, characterization and use in cycloaddition reactions. Tetrahedron: Asymmetry, 2002, 13, 333-337.	1.8	37
112	Merging and bifurcation of 4+2 and 2+4 cycloaddition modes in the archetypal dimerization of butadiene. A case of competing bispericyclic, pericyclic and diradical paths. Tetrahedron Letters, 2002, 43, 8785-8789.	1.4	47
113	Solid supported chiral auxiliaries in asymmetric synthesis. Part 2: Catalysis of 1,3-dipolar cycloadditions by Mg(II) cation. Tetrahedron, 2001, 57, 8313-8322.	1.9	58
114	Classical and non-classical secondary orbital interactions and Coulombic attraction in the regiospecific dimerization of acrolein. Tetrahedron Letters, 2001, 42, 731-733.	1.4	14
115	Merging of 4+2 and 2+4 cycloaddition paths in the regiospecific dimerization of methacrolein. A case of concerted crypto-diradical cycloaddition. Tetrahedron Letters, 2001, 42, 5077-5080.	1.4	30
116	Cycloadditions of Nitrile Oxides to the Highly ReactiveN-Acyl-2-oxa-3-azanorborn-5-enes Afford Versatile Cycloadducts and a Convenient Entry to Highly Functionalized Derivatives. European Journal of Organic Chemistry, 2000, 2000, 2613-2620.	2.4	33
117	Cycloadditions of Nitrile Oxides to α,β-Unsaturated Aldehydes. Frontier Orbital Interactions and Secondary Orbital Interactions at Work in Determining Regiochemistry. Tetrahedron, 2000, 56, 4299-4309.	1.9	27
118	(4S)-p-Hydroxybenzyl-1,3-oxazolidin-2-one as a solid-supported chiral auxiliary in asymmetric 1,3-dipolar cycloadditions. Tetrahedron Letters, 2000, 41, 1265-1269.	1.4	43
119	Cycloaddition of nitrile oxides to cyclic and acyclic α,β-unsaturated amides. Frontier orbital interactions and an unexpected steric drift determine regiochemistry. Tetrahedron, 1999, 55, 7027-7044.	1.9	33
120	Cycloadditions of nitrile oxides to amidoximes. A general synthesis of 3,5-disubstituted 1,2,4-oxadiazole-4-oxides Tetrahedron, 1997, 53, 1787-1796.	1.9	40
121	Cycloaddition of benzonitrile oxide to pyridazine, pyrimidine and pyrazine. Tetrahedron, 1996, 52, 6421-6436.	1.9	21
122	Copper (II) in organic synthesis. XI. Evaluation of the ligand architecture on the efficiency of a copper (II) catalyst for enantioselective Michael reactions. Tetrahedron, 1995, 51, 4131-4144.	1.9	61
123	A Pericyclic Cascade in the Addition of Diphenyl Nitrile Imine to Pyridine. Heterocycles, 1995, 40, 515.	0.7	8
124	Freshness <i>Traffic Light</i> for Fish Products: Dual-Optode Label to Monitor Fish Spoilage in Sales Packages. ACS Food Science & Technology, 0, , .	2.7	2