Haruhiko Siomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768285/publications.pdf Version: 2024-02-01

		30070	24258
117	15,454	54	110
papers	citations	h-index	g-index
125	125	125	11994
all docs	docs citations	times ranked	citing authors

HADILHIKO SIOMI

#	Article	IF	CITATIONS
1	Pro108Ser mutation of SARS-CoV-2 3CLpro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Scientific Reports, 2022, 12, 1299.	3.3	15
2	Clinical utility of SARS-CoV-2 whole genome sequencing in deciphering source of infection. Journal of Hospital Infection, 2021, 107, 40-44.	2.9	19
3	Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Research, 2021, 49, 2700-2720.	14.5	26
4	Piwi–piRNA complexes induce stepwise changes in nuclear architecture at target loci. EMBO Journal, 2021, 40, e108345.	7.8	8
5	Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nature Cell Biology, 2021, 23, 1002-1012.	10.3	30
6	Potent mouse monoclonal antibodies that block SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 296, 100346.	3.4	15
7	The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines. Biochemical Society Transactions, 2021, 49, 2879-2890.	3.4	16
8	ATAC-seq method applied to embryonic germ cells and neural stem cells from mouse: Practical tips and modifications. , 2020, , 371-386.		2
9	Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Science Advances, 2020, 6, .	10.3	18
10	Crystal structure of Drosophila Piwi. Nature Communications, 2020, 11, 858.	12.8	42
11	Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. Developmental Cell, 2019, 51, 21-34.e5.	7.0	26
12	Essential roles of Windei and nuclear monoubiquitination of Eggless/ <scp>SETDB</scp> 1 in transposon silencing. EMBO Reports, 2019, 20, e48296.	4.5	34
13	Nuclear RNA export factor variant initiates piRNAâ€guided coâ€ŧranscriptional silencing. EMBO Journal, 2019, 38, e102870.	7.8	57
14	Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature, 2018, 555, 260-264.	27.8	44
15	Profiling Open Chromatin Structure in theÂOvarian Somatic Cells Using ATAC-seq. Methods in Molecular Biology, 2018, 1680, 165-177.	0.9	4
16	Human PIWI (HIWI) is an azoospermia factor. Science China Life Sciences, 2018, 61, 348-350.	4.9	11
17	Hepatic Ago2-mediated RNA silencing controls energy metabolism linked to AMPK activation and obesity-associated pathophysiology. Nature Communications, 2018, 9, 3658.	12.8	29
18	Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Reports, 2018, 23, 3647-3657.	6.4	45

#	Article	IF	CITATIONS
19	Mobile elements control stem cell potency. Science, 2017, 355, 581-582.	12.6	Ο
20	Deep sequencing and high-throughput analysis of PIWI-associated small RNAs. Methods, 2017, 126, 66-75.	3.8	9
21	Identification of Mouse piRNA Pathway Components Using Anti-MIWI2 Antibodies. Methods in Molecular Biology, 2017, 1463, 205-216.	0.9	3
22	Loss of <i>l(3)mbt</i> leads to acquisition of the ping-pong cycle in <i>Drosophila</i> ovarian somatic cells. Genes and Development, 2016, 30, 1617-1622.	5.9	30
23	Inheritance of a Nuclear PIWI from Pluripotent Stem Cells by Somatic Descendants Ensures Differentiation by Silencing Transposons in Planarian. Developmental Cell, 2016, 37, 226-237.	7.0	71
24	Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA. Cell, 2016, 167, 484-497.e9.	28.9	116
25	Piwi Modulates Chromatin Accessibility by Regulating Multiple Factors Including Histone H1 to Repress Transposons. Molecular Cell, 2016, 63, 408-419.	9.7	110
26	Sphere-formation culture of testicular germ cells in the common marmoset, a small New World monkey. Primates, 2016, 57, 129-135.	1.1	6
27	Misprocessed <scp>tRNA</scp> response targets pi <scp>RNA</scp> clusters. EMBO Journal, 2015, 34, 2988-2989.	7.8	9
28	Somatic Primary piRNA Biogenesis Driven by cis-Acting RNA Elements and trans-Acting Yb. Cell Reports, 2015, 12, 429-440.	6.4	63
29	Tudor-domain containing proteins act to make the piRNA pathways more robust in Drosophila. Fly, 2015, 9, 86-90.	1.7	13
30	Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA Biogenesis in Bombyx Germ Cells. Cell Reports, 2015, 10, 193-203.	6.4	94
31	PIWI-Interacting RNA: Its Biogenesis and Functions. Annual Review of Biochemistry, 2015, 84, 405-433.	11.1	579
32	Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline. Molecular Cell, 2015, 59, 553-563.	9.7	61
33	Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom. Cell Reports, 2015, 11, 366-375.	6.4	36
34	Phased piRNAs tackle transposons. Science, 2015, 348, 756-757.	12.6	12
35	Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Developmental Biology, 2015, 400, 43-58.	2.0	15
36	Small RNAs: Artificial piRNAs for Transcriptional Silencing. Current Biology, 2015, 25, R280-R283.	3.9	4

#	Article	IF	CITATIONS
37	piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. Rna, 2015, 21, 1691-1703.	3.5	59
38	diRNA-Ago2-RAD51 complexes at double-strand break sites. Cell Research, 2014, 24, 511-512.	12.0	11
39	miRNA Regulatory Ecosystem in Early Development. Molecular Cell, 2014, 56, 615-616.	9.7	5
40	lt's time to exploit your favorite quirky organism with new technologies. EMBO Reports, 2014, 15, 620-621.	4.5	1
41	piRNA clusters and open chromatin structure. Mobile DNA, 2014, 5, 22.	3.6	86
42	Yb Integrates piRNA Intermediates and Processing Factors into Perinuclear Bodies to Enhance piRISC Assembly. Cell Reports, 2014, 8, 103-113.	6.4	62
43	Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. Rna, 2014, 20, 1223-1237.	3.5	80
44	Roles of R2D2, a Cytoplasmic D2 Body Component, in the Endogenous siRNA Pathway in Drosophila. Molecular Cell, 2013, 49, 680-691.	9.7	62
45	DmGTSF1 is necessary for Piwi–piRISC-mediated transcriptional transposon silencing in the <i>Drosophila</i> ovary. Genes and Development, 2013, 27, 1656-1661.	5.9	122
46	Purification of dFMR1-Containing Complexes Using Tandem Affinity Purification. Methods in Molecular Biology, 2013, 1010, 111-121.	0.9	0
47	Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes and Development, 2012, 26, 2361-2373.	5.9	305
48	Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 2012, 491, 284-287.	27.8	298
49	PIWI Proteins and Their Slicer Activity in piRNA Biogenesis and Transposon Silencing. The Enzymes, 2012, 32, 137-162.	1.7	1
50	Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature, 2011, 480, 391-395.	27.8	203
51	Stress Signaling Etches Heritable Marks on Chromatin. Cell, 2011, 145, 1005-1007.	28.9	1
52	Gatekeepers for Piwi–piRNA complexes to enter the nucleus. Current Opinion in Genetics and Development, 2011, 21, 484-490.	3.3	29
53	Gender-Specific Hierarchy in Nuage Localization of PIWI-Interacting RNA Factors in Drosophila. Frontiers in Genetics, 2011, 2, 55.	2.3	33
54	Maelstrom coordinates microtubule organization during <i>Drosophila</i> oogenesis through interaction with components of the MTOC. Genes and Development, 2011, 25, 2361-2373.	5.9	65

#	Article	IF	CITATIONS
55	Biochemical Analyzes of Endogenous Argonaute Complexes Immunopurified with Anti-Argonaute Monoclonal Antibodies. Methods in Molecular Biology, 2011, 725, 29-43.	0.9	6
56	Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Molecular Genetics and Genomics, 2010, 284, 95-103.	2.1	201
57	Fragile X carrier screening and FMR1 allele distribution in the Japanese population. Brain and Development, 2010, 32, 110-114.	1.1	49
58	A direct role for Hsp90 in pre-RISC formation in Drosophila. Nature Structural and Molecular Biology, 2010, 17, 1024-1026.	8.2	154
59	Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. PLoS ONE, 2010, 5, e15264.	2.5	32
60	How does the Royal Family of Tudor rule the PIWI-interacting RNA pathway?. Genes and Development, 2010, 24, 636-646.	5.9	172
61	Biogenesis pathways of piRNAs loaded onto AGO3 in the <i>Drosophila</i> testis. Rna, 2010, 16, 2503-2515.	3.5	109
62	Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in <i>Drosophila</i> . Genes and Development, 2010, 24, 2493-2498.	5.9	261
63	Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in <i>Drosophila</i> . Rna, 2010, 16, 506-515.	3.5	83
64	Posttranscriptional Regulation of MicroRNA Biogenesis in Animals. Molecular Cell, 2010, 38, 323-332.	9.7	507
65	P36. A possible link between piRNA biogenesis and microtubule organization in Drosophila ovaries. Differentiation, 2010, 80, S28-S29.	1.9	0
66	piRNA-mediated silencing in Drosophila germlines. Seminars in Cell and Developmental Biology, 2010, 21, 754-759.	5.0	56
67	The Key Features of RNA Silencing. , 2010, , 1-28.		0
68	Is canalization more than just a beautiful idea?. Genome Biology, 2010, 11, 109.	9.6	12
69	Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the <i>Drosophila</i> miRNA pathway. Rna, 2009, 15, 1282-1291.	3.5	96
70	Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO Journal, 2009, 28, 3820-3831.	7.8	174
71	Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Modern Pathology, 2009, 22, 431-441.	5.5	120
72	On the road to reading the RNA-interference code. Nature, 2009, 457, 396-404.	27.8	583

#	Article	IF	CITATIONS
73	A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature, 2009, 461, 1296-1299.	27.8	387
74	RISC hitches onto endosome trafficking. Nature Cell Biology, 2009, 11, 1049-1051.	10.3	58
75	A microRNA regulatory mechanism of osteoblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20794-20799.	7.1	273
76	Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008, 453, 793-797.	27.8	417
77	How selfish retrotransposons are silenced in <i>Drosophila</i> germline and somatic cells. FEBS Letters, 2008, 582, 2473-2478.	2.8	44
78	Interactions between transposable elements and Argonautes have (probably) been shaping the Drosophila genome throughout evolution. Current Opinion in Genetics and Development, 2008, 18, 181-187.	3.3	21
79	Circadian Phenotypes of Drosophila Fragile X Mutants in Alternative Genetic Backgrounds. Zoological Science, 2008, 25, 561-571.	0.7	18
80	Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7964-7969.	7.1	221
81	How to Define Targets for Small Guide RNAs in RNA Silencing: A Biochemical Approach. Methods in Enzymology, 2008, 449, 345-355.	1.0	2
82	Transposable elements, RNA silencing, and their impacts on the genome throughout evolution. Uirusu, 2008, 58, 55-60.	0.1	3
83	In vitro RNA Cleavage Assay for Argonaute-Family Proteins. Methods in Molecular Biology, 2008, 442, 29-43.	0.9	25
84	Expanding RNA physiology: microRNAs in a unicellular organism. Genes and Development, 2007, 21, 1153-1156.	5.9	13
85	Pimet, the <i>Drosophila</i> homolog of HEN1, mediates 2′- <i>O</i> -methylation of Piwi- interacting RNAs at their 3′ ends. Genes and Development, 2007, 21, 1603-1608.	5.9	400
86	Gene silencing mechanisms mediated by Aubergine–piRNA complexes in <i>Drosophila</i> male gonad. Rna, 2007, 13, 1911-1922.	3.5	245
87	Connection between RNA silencing and fragile X syndrome. Neuroscience Research, 2007, 58, S12.	1.9	0
88	A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila. Science, 2007, 315, 1587-1590.	12.6	1,065
89	In Vitro Precursor MicroRNA Processing Assays Using <i>Drosophila</i> Schneider-2 Cell Lysates. , 2006, 342, 277-286.		3
90	Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the <i>Drosophila</i> genome. Genes and Development, 2006, 20, 2214-2222.	5.9	566

#	Article	IF	CITATIONS
91	A potential link between transgene silencing and poly(A) tails. Rna, 2005, 11, 1004-1011.	3.5	15
92	Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes and Development, 2005, 19, 2837-2848.	5.9	343
93	Identification of Components of RNAi Pathways Using the Tandem Affinity Purification Method <i>. , 2005, 309, 001-010.</i>		5
94	Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells. PLoS Biology, 2005, 3, e235.	5.6	352
95	Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes and Development, 2004, 18, 1655-1666.	5.9	715
96	RNA interference: A new mechanism by which FMRP acts in the normal brain? What can Drosophila teach us?. Mental Retardation and Developmental Disabilities Research Reviews, 2004, 10, 68-74.	3.6	32
97	A <i>Drosophila</i> fragile X protein interacts with components of RNAi and ribosomal proteins. Genes and Development, 2002, 16, 2497-2508.	5.9	513
98	Casein Kinase II Phosphorylates the Fragile X Mental Retardation Protein and Modulates Its Biological Properties. Molecular and Cellular Biology, 2002, 22, 8438-8447.	2.3	81
99	The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DExH-Box Helicase to Direct RNAi in C. elegans. Cell, 2002, 109, 861-871.	28.9	456
100	A Role for the Drosophila Fragile X-Related Gene in Circadian Output. Current Biology, 2002, 12, 1331-1335.	3.9	106
101	RNA-binding proteins as regulators of gene expression. Current Opinion in Genetics and Development, 1997, 7, 345-353.	3.3	255
102	Transportin: Nuclear Transport Receptor of a Novel Nuclear Protein Import Pathway. Experimental Cell Research, 1996, 229, 261-266.	2.6	105
103	Augmentation of c-fos and c-jun expression in transgenic mice carrying the human T-cell leukemia virus type-Itax gene. Virus Genes, 1995, 9, 161-170.	1.6	15
104	A nuclear localization domain in the hnRNP A1 protein Journal of Cell Biology, 1995, 129, 551-560.	5.2	484
105	Analysis of a novel defective HTLV-I provirus and detection of a new HTLV-I-induced cellular transcript. FEBS Letters, 1995, 375, 31-36.	2.8	9
106	Signal Sequences That Target Nuclear Import and Nuclear Export of Pre-mRNA-binding Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1995, 60, 663-668.	1.1	77
107	Essential role for KH domains in RNA binding: Impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell, 1994, 77, 33-39.	28.9	437
108	The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell, 1993, 74, 291-298.	28.9	636

#	Article	IF	CITATIONS
109	The pre-mRNA binding K protein contains a novel evolutionary conserved motif. Nucleic Acids Research, 1993, 21, 1193-1198.	14.5	527
110	A region of basic amino-acid cluster in HIV-1 Tat protein is essential forTrans-acting activity and nucleolar localization. Virus Genes, 1989, 3, 99-110.	1.6	76
111	Functional similarity of HIV-I rev and HTLV-I rex proteins: Identification of a new nucleolar-targeting signal in rev protein. Biochemical and Biophysical Research Communications, 1989, 162, 963-970.	2.1	148
112	Nucleolar targeting signal of human T-cell leukemia virus type I rex-encoded protein is essential for cytoplasmic accumulation of unspliced viral mRNA Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9798-9802.	7.1	113
113	Differential effects on expression of ILâ€2 receptors (p55 and p70) by the HTLVâ€I pX DNA. International Journal of Cancer, 1988, 41, 880-885.	5.1	26
114	Two major subgroups of human T-Cell leukemia virus-1 in Japan. Virus Genes, 1988, 1, 377-83.	1.6	10
115	Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell, 1988, 55, 197-209.	28.9	351
116	Expression of a Provirus of Human T Cell leukaemia Virus Type I by DNA Transfection. Journal of General Virology, 1987, 68, 499-506.	2.9	59
117	Preferential transcription of HTLV-I LTR in cell-free extracts of human T cells producing HTLV-I viral proteins. Nucleic Acids Research, 1986, 14, 4779-4786.	14.5	4