
Jinrui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1768131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel method for diagnosing bearing transfer faults based on a maximum mean discrepancies guided domain-adversarial mechanism. Measurement Science and Technology, 2022, 33, 015109.	2.6	20
2	Parallel Cross-Sparse Filtering Networks and Its Application on Fault Diagnosis of Rotating Machinery. Journal of Sensors, 2022, 2022, 1-12.	1.1	1
3	Fast nonlinear Hoyergram for bearings fault diagnosis under random impact interference. Measurement Science and Technology, 2022, 33, 075112.	2.6	8
4	A novel rolling bearing fault diagnosis method based on generalized nonlinear spectral sparsity. Measurement: Journal of the International Measurement Confederation, 2022, 198, 111131.	5.0	7
5	Fast general normalized convolutional sparse filtering via L1-L2 mixed norm for rotating machinery fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2022, 198, 111136.	5.0	2
6	Partial Domain Adaptation Method Based on Class-Weighted Alignment for Fault Diagnosis of Rotating Machinery. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	4.7	11
7	Weak fault diagnosis of machinery using Laplacian eigenmaps and parallel sparse filtering. Measurement Science and Technology, 2022, 33, 114003.	2.6	3
8	An intelligent diagnosis framework for roller bearing fault under speed fluctuation condition. Neurocomputing, 2021, 420, 171-180.	5.9	51
9	Intelligent fault diagnosis for rotating machinery using <i>L_{1/2}</i> -SF under variable rotational speed. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235, 1409-1422.	1.9	11
10	Generalized sparse filtering for rotating machinery fault diagnosis. Journal of Supercomputing, 2021, 77, 3402-3421.	3.6	4
11	A Weighted Subdomain Adaptation Network for Partial Transfer Fault Diagnosis of Rotating Machinery. Entropy, 2021, 23, 424.	2.2	23
12	Hybrid distance-guided adversarial network for intelligent fault diagnosis under different working conditions. Measurement: Journal of the International Measurement Confederation, 2021, 176, 109197.	5.0	61
13	An enhanced sparse filtering method for transfer fault diagnosis using maximum classifier discrepancy. Measurement Science and Technology, 2021, 32, 085105.	2.6	18
14	General normalized maximum mean discrepancy: intelligent fault identification method for bearings and gears under unstable conditions. Measurement Science and Technology, 2021, 32, 104001.	2.6	7
15	Application of adaptive complementary ensemble local mean decomposition in underwater acoustic signal processing. Applied Acoustics, 2021, 178, 107966.	3.3	12
16	A novel transfer-learning method based on selective normalization for fault diagnosis with limited labeled data. Measurement Science and Technology, 2021, 32, 105116.	2.6	13
17	A Non-Contact Fault Diagnosis Method for Bearings and Gears Based on Generalized Matrix Norm Sparse Filtering. Entropy, 2021, 23, 1075.	2.2	1
18	A New Universal Domain Adaptive Method for Diagnosing Unknown Bearing Faults. Entropy, 2021, 23, 1052.	2.2	12

JINRUI WANG

#	Article	IF	CITATIONS
19	Intelligent rotating machinery fault diagnosis based on super-resolution enhancement using data augmentation under large speed fluctuation. Measurement Science and Technology, 2021, 32, 125105.	2.6	2
20	An identification method for mechanical fault diagnosis based on generalized matrix norm sparse filtering. Measurement Science and Technology, 2021, 32, 125115.	2.6	3
21	Parallel sparse filtering for intelligent fault diagnosis using acoustic signal processing. Neurocomputing, 2021, 462, 466-477.	5.9	27
22	A Generalizable Sample Resolution Augmentation Method for Mechanical Fault Diagnosis Based on ESPCN. Journal of Sensors, 2021, 2021, 1-11.	1.1	2
23	A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition. Neurocomputing, 2020, 376, 54-64.	5.9	37
24	A novel adaptive and fast deep convolutional neural network for bearing fault diagnosis under different working conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 1167-1182.	1.9	14
25	A renewable fusion fault diagnosis network for the variable speed conditions under unbalanced samples. Neurocomputing, 2020, 379, 12-29.	5.9	36
26	A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network. ISA Transactions, 2020, 100, 155-170.	5.7	124
27	Adaptive Cross-Domain Feature Extraction Method and Its Application on Machinery Intelligent Fault Diagnosis Under Different Working Conditions. IEEE Access, 2020, 8, 535-546.	4.2	9
28	Deep Adaptive Adversarial Network-Based Method for Mechanical Fault Diagnosis under Different Working Conditions. Complexity, 2020, 2020, 1-11.	1.6	10
29	A Novel Data Augmentation Method for Intelligent Fault Diagnosis Under Speed Fluctuation Condition. IEEE Access, 2020, 8, 143383-143396.	4.2	10
30	A Novel Stacked Auto Encoders Sparse Filter Rotating Component Comprehensive Diagnosis Network for Extracting Domain Invariant Features. Applied Sciences (Switzerland), 2020, 10, 6084.	2.5	2
31	A Generic Intelligent Bearing Fault Diagnosis System Using Convolutional Neural Networks With Transfer Learning. IEEE Access, 2020, 8, 164807-164814.	4.2	31
32	Imbalanced Fault Classification of Bearing via Wasserstein Generative Adversarial Networks with Gradient Penalty. Shock and Vibration, 2020, 2020, 1-14.	0.6	4
33	A Novel Deep Sparse Filtering Method for Intelligent Fault Diagnosis by Acoustic Signal Processing. Shock and Vibration, 2020, 2020, 1-11.	0.6	3
34	Multidimensional Blind Deconvolution Method Based on Cross-Sparse Filtering for Weak Fault Diagnosis. IEEE Access, 2020, 8, 209415-209427.	4.2	4
35	A Novel Unsupervised Learning Method Based on Cross-Normalization for Machinery Fault Diagnosis. IEEE Access, 2020, 8, 92407-92417.	4.2	5
36	Intelligent fault diagnosis method for rotating machinery based on vibration signal analysis and hybrid multiâ€object deep CNN. IET Science, Measurement and Technology, 2020, 14, 407-415.	1.6	13

Jinrui Wang

#	Article	IF	CITATIONS
37	Data augment method for machine fault diagnosis using conditional generative adversarial networks. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2719-2727.	1.9	23
38	Research and Application of Regularized Sparse Filtering Model for Intelligent Fault Diagnosis Under Large Speed Fluctuation. IEEE Access, 2020, 8, 39809-39818.	4.2	3
39	Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis. Neurocomputing, 2020, 398, 31-44.	5.9	39
40	A novel intelligent fault diagnosis method based on fast intrinsic component filtering and pseudo-normalization. Mechanical Systems and Signal Processing, 2020, 145, 106923.	8.0	41
41	A Novel Transfer Learning Method for Fault Diagnosis Using Maximum Classifier Discrepancy With Marginal Probability Distribution Adaptation. IEEE Access, 2020, 8, 71475-71485.	4.2	23
42	A Review on the Signal Processing Methods of Rotating Machinery Fault Diagnosis. , 2019, , .		13
43	Generalization of Deep Neural Networks for Imbalanced Fault Classification of Machinery Using Generative Adversarial Networks. IEEE Access, 2019, 7, 111168-111180.	4.2	56
44	A novel convolutional transfer feature discrimination network for unbalanced fault diagnosis under variable rotational speeds. Measurement Science and Technology, 2019, 30, 105107.	2.6	26
45	Adaptive Reinforced Empirical Morlet Wavelet Transform and Its Application in Fault Diagnosis of Rotating Machinery. IEEE Access, 2019, 7, 65150-65162.	4.2	16
46	A New Fault Feature Extraction Method for Non-Stationary Signal Based on Advanced Synchrosqueezing Transform. Journal of Vibration Engineering and Technologies, 2019, 7, 291-299.	2.2	13
47	Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method. Neurocomputing, 2019, 352, 42-53.	5.9	114
48	Gear Fault Intelligent Diagnosis Based on Frequency-Domain Feature Extraction. Journal of Vibration Engineering and Technologies, 2019, 7, 159-166.	2.2	36
49	General normalized sparse filtering: A novel unsupervised learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 2019, 124, 596-612.	8.0	97
50	Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis. Measurement Science and Technology, 2019, 30, 015106.	2.6	51
51	Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines. Neurocomputing, 2019, 329, 53-65.	5.9	198
52	A New Deep Transfer Learning Network for Fault Diagnosis of Rotating Machine Under Variable Working Conditions. , 2018, , .		16
53	A New Transfer Learning Method and its Application on Rotating Machine Fault Diagnosis Under Variant Working Conditions. IEEE Access, 2018, 6, 69907-69917.	4.2	73
54	Advanced component transmission path analysis based on transmissibility matrices and blocked displacements. Journal of Sound and Vibration, 2018, 437, 242-263.	3.9	7

JINRUI WANG

#	Article	IF	CITATIONS
55	A novel supervised sparse feature extraction method and its application on rotating machine fault diagnosis. Neurocomputing, 2018, 320, 129-140.	5.9	31
56	An Intelligent Fault Diagnosis Approach Considering the Elimination of the Weight Matrix Multi-Correlation. Applied Sciences (Switzerland), 2018, 8, 906.	2.5	11
57	An intelligent fault diagnosis framework for raw vibration signals: adaptive overlapping convolutional neural network. Measurement Science and Technology, 2018, 29, 095009.	2.6	47
58	An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis. Journal of Vibroengineering, 2018, 20, 2321-2335.	1.0	14
59	An intelligent fault diagnosis method of rotating machinery using L1-regularized sparse filtering. Journal of Vibroengineering, 2018, 20, 2839-2854.	1.0	11
60	An intelligent fault diagnosis method in the case of rotating speed fluctuations. , 2017, , .		4
61	A novel feature representation method based on deep neural networks for gear fault diagnosis. , 2017, , .		4
62	An automatic feature extraction method and its application in fault diagnosis. Journal of Vibroengineering, 2017, 19, 2521-2533.	1.0	10
63	Weak Fault DiagnosisÂOf Machinery Using Laplacian EigenmapsÂAnd Parallel Sparse Filtering. SSRN Electronic Journal, 0, , .	0.4	0
64	Fault diagnosis of rotating machinery under noise environment based on modified general normalized sparse filtering. Measurement Science and Technology, 0, , .	2.6	1