Stephan Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/176804/publications.pdf

Version: 2024-02-01

papers cit

1,903 19 citations h-index

394421

677142 22 g-index

29 all docs 29 docs citations 29 times ranked 2453 citing authors

#	Article	IF	CITATIONS
1	Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity. Cell Host and Microbe, 2013, 14, 619-630.	11.0	227
2	Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist, 2011, 191, 107-119.	7.3	206
3	The mitochondrial complexome of <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 1079-1092.	5.7	192
4	The fluorescent protein sensor ro <scp>GFP</scp> 2â€Orp1 monitors <i>inÂvivo</i> H ₂ O ₂ and thiol redox integration and elucidates intracellular H ₂ O ₂ dynamics during elicitorâ€induced oxidative burst in Arabidopsis. New Phytologist, 2019, 221, 1649-1664.	7.3	132
5	ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. ELife, 2017, 6, .	6.0	125
6	The â€~mitoflash' probe cpYFP does not respond to superoxide. Nature, 2014, 514, E12-E14.	27.8	109
7	The EF-Hand Ca ²⁺ Binding Protein MICU Choreographs Mitochondrial Ca ²⁺ Dynamics in Arabidopsis. Plant Cell, 2015, 27, 3190-3212.	6.6	103
8	Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 741-751.	7.1	96
9	The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13735-13740.	7.1	84
10	Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. Plant Physiology, 2018, 176, 1156-1170.	4.8	79
11	ATP compartmentation in plastids and cytosol of <i>Arabidopsis thaliana</i> revealed by fluorescent protein sensing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10778-E10787.	7.1	7 2
12	Chloroplast-Specific in Vivo Ca ²⁺ Imaging Using Yellow Cameleon Fluorescent Protein Sensors Reveals Organelle-Autonomous Ca ²⁺ Signatures in the Stroma. Plant Physiology, 2016, 171, 2317-2330.	4.8	71
13	Glutathione peroxidaseâ€ike enzymes cover five distinct cell compartments and membrane surfaces in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 1281-1295.	5.7	69
14	Multiparametric realâ€time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytologist, 2019, 224, 1668-1684.	7.3	69
15	Regulation of mitochondrial calcium in plants versus animals. Journal of Experimental Botany, 2016, 67, 3809-3829.	4.8	55
16	Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. Plant Physiology, 2017, 173, 1355-1370.	4.8	54
17	D-Lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome C. Plant Physiology, 2016, 172, pp.01174.2016.	4.8	42
18	In Vivo NADH/NAD ⁺ Biosensing Reveals the Dynamics of Cytosolic Redox Metabolism in Plants. Plant Cell, 2020, 32, 3324-3345.	6.6	40

#	Article	IF	CITATION
19	Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. Plant Cell, 2022, 34, 1375-1395.	6.6	25
20	Analysis of Plant Mitochondrial Function Using Fluorescent Protein Sensors. Methods in Molecular Biology, 2015, 1305, 241-252.	0.9	23
21	The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. Plant Physiology, 2021, 186, 1507-1525.	4.8	12
22	Crystallization and preliminary crystallographic analysis of <i>Arabidopsis thaliana </i> EDS1, a key component of plant immunity, in complex with its signalling partner SAG101. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 245-248.	0.7	4
23	Ion channels and regulators involved in mitochondrial calcium fluxes in plants. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e18-e19.	1.0	0