Binghong Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767831/publications.pdf Version: 2024-02-01

RINCHONG LUO

#	Article	IF	CITATIONS
1	3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 2018, 160, 486-495.	7.0	115
2	Liquid Crystalline Behaviors of Chitin Nanocrystals and Their Reinforcing Effect on Natural Rubber. ACS Sustainable Chemistry and Engineering, 2018, 6, 325-336.	6.7	79
3	The improvement of mechanical performance and water-response of carboxylated SBR by chitin nanocrystals. European Polymer Journal, 2015, 68, 190-206.	5.4	68
4	Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer. Carbohydrate Polymers, 2017, 156, 235-243.	10.2	61
5	Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. International Journal of Biological Macromolecules, 2015, 78, 23-31.	7.5	58
6	Enhanced mechanical properties and cytocompatibility of electrospun poly(l -lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes. Applied Surface Science, 2016, 369, 82-91.	6.1	56
7	Electrospun composite nanofiber membrane of poly(l -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydrate Polymers, 2016, 147, 216-225.	10.2	55
8	The design, fabrication and evaluation of 3D printed gHNTs/gMgO whiskers/PLLA composite scaffold with honeycomb microstructure for bone tissue engineering. Composites Part B: Engineering, 2020, 192, 108001.	12.0	55
9	3D poly (L-lactide)/chitosan micro/nano fibrous scaffolds functionalized with quercetin-polydopamine for enhanced osteogenic and anti-inflammatory activities. Chemical Engineering Journal, 2020, 391, 123524.	12.7	50
10	lcariin immobilized electrospinning poly(l-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Materials Science and Engineering C, 2017, 79, 399-409.	7.3	49
11	Superamphiphobic Surfaces with Self-Cleaning and Antifouling Properties by Functionalized Chitin Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 6690-6699.	6.7	47
12	Fabrication and Evaluation of 3D Printed Poly(<scp>l</scp> -lactide) Scaffold Functionalized with Quercetin-Polydopamine for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2506-2518.	5.2	44
13	Stress-relaxing double-network hydrogel for chondrogenic differentiation of stem cells. Materials Science and Engineering C, 2020, 107, 110333.	7.3	43
14	Construction of biomimetic artificial intervertebral disc scaffold via 3D printing and electrospinning. Materials Science and Engineering C, 2021, 128, 112310.	7.3	38
15	Mechanical properties and osteogenic activity of poly(l-lactide) fibrous membrane synergistically enhanced by chitosan nanofibers and polydopamine layer. Materials Science and Engineering C, 2017, 81, 280-290.	7.3	36
16	Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers. Applied Surface Science, 2015, 332, 215-223.	6.1	35
17	Nanocomposites of poly(l -lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. European Polymer Journal, 2016, 81, 266-283.	5.4	35
18	Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 604-614.	3.1	35

BINGHONG LUO

#	Article	IF	CITATIONS
19	Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids and Surfaces B: Biointerfaces, 2019, 179, 299-308.	5.0	33
20	Sulfonated chitosan and phosphorylated chitosan coated polylactide membrane by polydopamine-assisting for the growth and osteogenic differentiation of MC3T3-E1s. Carbohydrate Polymers, 2020, 229, 115517.	10.2	31
21	Sustained release of plasmid DNA from PLLA/POSS nanofibers for angiogenic therapy. Chemical Engineering Journal, 2019, 365, 270-281.	12.7	30
22	Chitin Nanocrystals as an Eco-friendly and Strong Anisotropic Adhesive. ACS Applied Materials & Interfaces, 2021, 13, 11356-11368.	8.0	30
23	Fabrication and evaluation of a chitin whisker/poly(<scp>l</scp> -lactide) composite scaffold by the direct trisolvent-ink writing method for bone tissue engineering. Nanoscale, 2020, 12, 18225-18239.	5.6	29
24	In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. Journal of Materials Science, 2017, 52, 2329-2344.	3.7	25
25	Synergistic reinforcing and toughening of poly(l -lactide) composites with surface-modified MgO and chitin whiskers. Composites Science and Technology, 2016, 133, 128-135.	7.8	23
26	Liquid crystalline and rheological properties of chitin whiskers with different chemical structures and chargeability. International Journal of Biological Macromolecules, 2020, 157, 24-35.	7.5	22
27	Rapid synthesis and characterization of chitosanâ€ <i>g</i> â€poly(<scp>D,L</scp> â€lactide) copolymers with hydroxyethyl chitosan as a macroinitiator under microwave irradiation. Journal of Applied Polymer Science, 2012, 125, E125.	2.6	21
28	Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functionalization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating. Applied Surface Science, 2016, 360, 858-865.	6.1	21
29	Hyaluronic Acid Modified Halloysite Nanotubes Decorated with ZIF-8 Nanoparticles as Dual Chemo- and Photothermal Anticancer Agents. ACS Applied Nano Materials, 2022, 5, 5813-5825.	5.0	21
30	Well-ordered chitin whiskers layer with high stability on the surface of poly(d,l-lactide) film for enhancing mechanical and osteogenic properties. Carbohydrate Polymers, 2019, 212, 277-288.	10.2	20
31	Preparation of HAp whiskers with or without Mg ions and their effects on the mechanical properties and osteogenic activity of poly(,-lactide). Composites Part B: Engineering, 2020, 196, 108137.	12.0	20
32	3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction. Composites Science and Technology, 2021, 208, 108763.	7.8	19
33	Deferoxamine immobilized poly(D,L-lactide) membrane via polydopamine adhesive coating: The influence on mouse embryo osteoblast precursor cells and human umbilical vein endothelial cells. Materials Science and Engineering C, 2017, 70, 701-709.	7.3	18
34	The liquid crystalline order, rheology and their correlation in chitin whiskers suspensions. Carbohydrate Polymers, 2019, 209, 92-100.	10.2	18
35	Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106813.	7.6	18
36	Crosslinked carboxylated SBR composites reinforced with chitin nanocrystals. Journal of Polymer Research, 2016, 23, 1.	2.4	17

BINGHONG LUO

#	Article	IF	CITATIONS
37	Preparation of Icariin and Deferoxamine Functionalized Poly(<scp>l</scp> -lactide)/chitosan Micro/Nanofibrous Membranes with Synergistic Enhanced Osteogenesis and Angiogenesis. ACS Applied Bio Materials, 2018, 1, 389-402.	4.6	16
38	Biomineralization guided by polydopamine-modifed poly(L-lactide) fibrous membrane for promoted osteoconductive activity. Biomedical Materials (Bristol), 2019, 14, 055005.	3.3	16
39	Enzymatic Degradation of Nanosized Chitin Whiskers with Different Degrees of Deacetylation. ACS Biomaterials Science and Engineering, 2019, 5, 5316-5326.	5.2	16
40	Engineering collagen fiber templates with oriented nanoarchitecture and concerns on osteoblast behaviors. International Journal of Biological Macromolecules, 2021, 185, 77-86.	7.5	15
41	Facile fabrication of hydrophobic paper by HDTMS modified chitin nanocrystals coating for food packaging. Food Hydrocolloids, 2022, 133, 107915.	10.7	15
42	Surface modification of halloysite nanotubes with <scp>l</scp> â€lactic acid: An effective route to highâ€performance poly(<scp>l</scp> â€lactide) composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
43	Customized composite intervertebral disc scaffolds by integrated 3D bioprinting for therapeutic implantation. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106468.	7.6	14
44	Anisotropic and robust hydrogels combined osteogenic and angiogenic activity as artificial periosteum. Composites Part B: Engineering, 2022, 233, 109627.	12.0	13
45	A multifunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration. Journal of Biomaterials Applications, 2020, 34, 1041-1051.	2.4	12
46	Creating Ultrastrong and Osteogenic Chitin Nanocomposite Hydrogels via Chitin Whiskers with Different Surface Chemistries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17487-17499.	6.7	11
47	Bio-inspired liquid crystal gel with adjustable viscoelasticity to modulate cell behaviors and fate. Composites Part B: Engineering, 2022, 234, 109704.	12.0	11
48	Fabrication, antibacterial activity and cytocompatibility of quaternary ammonium chitooligosaccharide functionalized polyurethane membrane via polydopamine adhesive layer. Materials Science and Engineering C, 2018, 93, 319-331.	7.3	9
49	Dual-Cross-linked Liquid Crystal Hydrogels with Controllable Viscoelasticity for Regulating Cell Behaviors. ACS Applied Materials & Interfaces, 2022, 14, 21966-21977.	8.0	9
50	Synergistic effect of functionalized poly(-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro. Materials Science and Engineering C, 2019, 103, 109851.	7.3	8
51	Facile Method to Create Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Membranes with Sequential Chitin Whisker Layers for Tunable Strength and Cell Adhesion. ACS Sustainable Chemistry and Engineering, 2021, 9, 4440-4452.	6.7	7
52	Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives. Science Bulletin, 2009, 54, 3167-3173.	1.7	5
53	Synergistic Effect of Surface-Modified MgO and Chitin Whiskers on the Hydrolytic Degradation Behavior of Injection Molding Poly(<scp>I</scp> -lactic acid). ACS Biomaterials Science and Engineering, 2019, 5, 2942-2952.	5.2	4
54	Mechanical and nonisothermal cold crystallization behaviors of injection molded surfaceâ€modified chitin whiskers/poly(<scp>l</scp> â€lactide) composites. Polymer Composites, 2021, 42, 6635-6647.	4.6	4

#	Article	IF	CITATIONS
55	Purification of Alginate for Tissue Engineering. , 2009, , .		2
56	Effect of MgO whiskers on thermal behavior and mechanical properties of injection molded poly(<i>L</i> ″actide). Polymer Composites, 2018, 39, E1807.	4.6	2