Bartholomäus Pieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie, 2022, 134, .	1.6	6
2	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Crossâ€Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
3	Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch. Organic Letters, 2022, 24, 5376-5380.	2.4	11
4	Carbon dot/TiO ₂ nanocomposites as photocatalysts for metallaphotocatalytic carbon–heteroatom cross-couplings. Green Chemistry, 2021, 23, 4524-4530.	4.6	22
5	Visible-Light-Mediated Oxidative Debenzylation Enables the Use of Benzyl Ethers as Temporary Protecting Groups. Organic Letters, 2021, 23, 514-518.	2.4	36
6	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie - International Edition, 2021, 60, 6965-6969.	7.2	52
7	Chromoselective Photocatalysis Enables Stereocomplementary Biocatalytic Pathways**. Angewandte Chemie, 2021, 133, 7041-7045.	1.6	12
8	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	1.9	109
9	Recyclable, Bifunctional Metallaphotocatalysts for Câ^'S Crossâ€Coupling Reactions. ChemPhotoChem, 2021, 5, 716-720.	1.5	6
10	Photochemical Strategies for Carbon–Heteroatom Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 1379-1392.	1.2	44
11	Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate <i>O</i> -Arylations. Journal of the American Chemical Society, 2020, 142, 11042-11049.	6.6	46
12	Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 454-454.	1.5	10
13	Dichloromethylation of enones by carbon nitride photocatalysis. Nature Communications, 2020, 11, 1387.	5.8	83
14	Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nature Catalysis, 2020, 3, 611-620.	16.1	144
15	Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 456-475.	1.5	147
16	An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering, 2020, 5, 597-604.	1.9	68
17	Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum. ACS Catalysis, 2020, 10, 13269-13274.	5.5	21
18	Semiheterogeneous Dual Nickel/Photocatalytic (Thio)etherification Using Carbon Nitrides. Organic Letters, 2019, 21, 5331-5334.	2.4	92

#	Article	IF	CITATIONS
19	Semiâ€heterogene duale Nickelâ€ / Photokatalyse mit Kohlenstoffnitriden: Veresterung von Carbonsären mit Arylhalogeniden. Angewandte Chemie, 2019, 131, 9676-9681.	1.6	20
20	Semiâ€heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 9575-9580.	7.2	108
21	Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks. Organic Process Research and Development, 2019, 23, 2764-2770.	1.3	12
22	Kontinuierliche heterogene Photokatalyse in seriellen Mikroâ€Batchâ€Reaktoren. Angewandte Chemie, 2018, 130, 10127-10131.	1.6	23
23	Continuous Heterogeneous Photocatalysis in Serial Microâ€Batch Reactors. Angewandte Chemie - International Edition, 2018, 57, 9976-9979.	7.2	134
24	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
25	Integrated flow processing — challenges in continuous multistep synthesis. Journal of Flow Chemistry, 2017, 7, 129-136.	1.2	27
26	Generation and Synthetic Application of Trifluoromethyl Diazomethane Utilizing Continuous Flow Technologies. Organic Letters, 2016, 18, 1076-1079.	2.4	82
27	Selective Olefin Reduction in Thebaine Using Hydrazine Hydrate and O ₂ under Intensified Continuous Flow Conditions. Organic Process Research and Development, 2016, 20, 376-385.	1.3	17
28	Continuous Synthesis of Hydantoins: Intensifying the Bucherer–Bergs Reaction. Synlett, 2015, 27, 83-87.	1.0	18
29	Continuous Flow Reduction of Artemisinic Acid Utilizing Multiâ€Injection Strategies—Closing the Gap Towards a Fully Continuous Synthesis of Antimalarial Drugs. Chemistry - A European Journal, 2015, 21, 4368-4376.	1.7	37
30	Aerobic Oxidations in Continuous Flow. Topics in Organometallic Chemistry, 2015, , 97-136.	0.7	25
31	A Sequential Ugi Multicomponent/Cu-Catalyzed Azide–Alkyne Cycloaddition Approach for the Continuous Flow Generation of Cyclic Peptoids. Journal of Organic Chemistry, 2015, 80, 4590-4602.	1.7	62
32	Flash carboxylation: fast lithiation–carboxylation sequence at room temperature in continuous flow. RSC Advances, 2014, 4, 13430.	1.7	37
33	Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids. Developmental Cell, 2014, 29, 729-739.	3.1	78
34	Immobilized Iron Oxide Nanoparticles as Stable and Reusable Catalysts for Hydrazineâ€Mediated Nitro Reductions in Continuous Flow. ChemSusChem, 2014, 7, 3122-3131.	3.6	54
35	In Situ Generation of Diimide from Hydrazine and Oxygen: Continuousâ€Flow Transfer Hydrogenation of Olefins. Angewandte Chemie - International Edition, 2013, 52, 10241-10244.	7.2	76
36	Direct aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solvent. Green Chemistry, 2013, 15, 320.	4.6	88

#	Article	IF	CITATIONS
37	Microwave Effects in Organic Synthesis: Myth or Reality?. Angewandte Chemie - International Edition, 2013, 52, 1088-1094.	7.2	457
38	In Situ Generation of Diimide from Hydrazine and Oxygen: Continuousâ€Flow Transfer Hydrogenation of Olefins. Angewandte Chemie, 2013, 125, 10431-10434.	1.6	26
39	Direct Arylation of Benzene with Aryl Bromides using Highâ€Temperature/Highâ€Pressure Process Windows: Expanding the Scope of CH Activation Chemistry. Chemistry - A European Journal, 2012, 18, 5047-5055.	1.7	39
40	Copperâ€Catalyzed Formation of CO Bonds by Direct αâ€CH Bond Activation of Ethers Using Stoichiometric Amounts of Peroxide in Batch and Continuousâ€Flow Formats. Chemistry - A European Journal, 2012, 18, 6124-6128.	1.7	96
41	Novel sensitive determination of steryl glycosides in biodiesel by gas chromatography–mass spectroscopy. Journal of Chromatography A, 2010, 1217, 6555-6561.	1.8	17