Rasoul Sarraf-Mamoory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767593/publications.pdf

Version: 2024-02-01

63 papers 1,031 citations

430874 18 h-index 477307 29 g-index

64 all docs 64
docs citations

64 times ranked 1307 citing authors

#	Article	IF	CITATIONS
1	Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles. Applied Surface Science, 2010, 256, 7559-7564.	6.1	97
2	Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Materials Chemistry and Physics, 2012, 132, 210-215.	4.0	64
3	Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Materials Chemistry and Physics, 2020, 239, 122305.	4.0	54
4	Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy, 2015, 157, 50-59.	4.3	44
5	Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57, 155-160.	2.7	41
6	A modified model for alumina membranes formed by gel-casting followed by dip-coating. Journal of the European Ceramic Society, 2004, 24, 3779-3787.	5.7	34
7	Gas injection approach for synthesis of hydroxyapatite nanorods via hydrothermal method. Materials Characterization, 2020, 159, 110071.	4.4	34
8	Nanocrystalline sol–gel TiO2–SnO2 coatings: Preparation, characterization and photo-catalytic performance. Materials Research Bulletin, 2012, 47, 362-369.	5. 2	33
9	Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface. Diamond and Related Materials, 2019, 100, 107561.	3.9	33
10	Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceramics International, 2019, 45, 1761-1769.	4.8	32
11	In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Materials Chemistry and Physics, 2019, 222, 251-255.	4.0	31
12	A clean production process for edible oil removal from wastewater using an electroflotation with horizontal arrangement of mesh electrodes. Journal of Cleaner Production, 2018, 198, 71-79.	9.3	27
13	Determination of the Optimum Conditions for the Leaching of Nonsulfide Zinc Ores (High-SiO2) in Ammonium Carbonate Media. Industrial & Engineering Chemistry Research, 2005, 44, 8952-8958.	3.7	26
14	Ultra-violet photodetection enhancement based on ZnO–graphene composites fabricated by sonochemical method. Journal of Sol-Gel Science and Technology, 2015, 74, 499-506.	2.4	26
15	Improving the mechanical behavior of reduced graphene oxide/hydroxyapatite nanocomposites using gas injection into powders synthesis autoclave. Scientific Reports, 2020, 10, 8552.	3.3	25
16	Enhanced fracture toughness of three dimensional graphene- hydroxyapatite nanocomposites by employing the Taguchi method. Composites Part B: Engineering, 2020, 190, 107928.	12.0	24
17	The effect of Sn dopant on crystal structure and photocatalytic behavior of nanostructured titania thin films. Journal of Sol-Gel Science and Technology, 2011, 60, 99-107.	2.4	23
18	Microstructural evolution and chemical redistribution in Fe–Cr–W–Ti–Y2O3 nanostructured powders prepared by ball milling. Journal of Alloys and Compounds, 2013, 577, 409-416.	5 . 5	19

#	Article	IF	Citations
19	Synthesis of NiMoO4/3D-rGO Nanocomposite in Alkaline Environments for Supercapacitor Electrodes. Crystals, 2019, 9, 31.	2.2	19
20	Supercapacitive performance of Fe-doped nickel molybdate/rGO hybrids: The effect of rGO. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129066.	4.7	18
21	Treatment of NiMoO4/nanographite nanocomposite electrodes using flexible graphite substrate for aqueous hybrid supercapacitors. PLoS ONE, 2021, 16, e0254023.	2.5	16
22	THE EFFECT OF PRECIPITATION PARAMETERS ON PREPARATION OF LITHIUM FLUORIDE (LIF) NANO-POWDER. Chemical Engineering Communications, 2007, 194, 1022-1028.	2.6	15
23	Evaluation of Argon-Gas-Injected Solvothermal Synthesis of Hydroxyapatite Crystals Followed by High-Frequency Induction Heat Sintering. Crystal Growth and Design, 2020, 20, 3182-3189.	3.0	15
24	Diffusion bonding of alumina using interlayer of mixed hydride nano powders. Ceramics International, 2014, 40, 3011-3021.	4.8	13
25	Synthesis of a NiMoO4/3D-rGO Nanocomposite via Starch Medium Precipitation Method for Supercapacitor Performance. Batteries, 2020, 6, 5.	4.5	13
26	The Study on the Crystallization Conditions of Zn ₅ (OH) ₆ (CO ₃) ₂ and its Effect on Precipitation of ZnO Nanoparticles from Purified Zinc Ammoniacal Solution. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 895-901.	0.6	12
27	Devising a novel method of producing high transparent magnesium aluminate spinel (MgAl2O4) ceramics body using synthesized LiF nanopowder and spark plasma sintering. Materials Chemistry and Physics, 2020, 250, 123035.	4.0	12
28	Alumina–copper joining by the sintered metal powder process. Ceramics International, 2010, 36, 741-747.	4.8	11
29	Effect of organic dispersants on structural and mechanical properties of Al2O3/ZrO2 composites. Materials Research Bulletin, 2012, 47, 4210-4215.	5.2	11
30	Acrylamide route for the co-synthesis of tungsten carbide–cobalt nanopowders with additives. Ceramics International, 2016, 42, 9382-9386.	4.8	11
31	Iron-doping as an effective strategy to enhance supercapacitive properties of nickel molybdate. Electrochimica Acta, 2019, 296, 608-616.	5.2	11
32	Improvements in the thermoelectric efficiency of SrTiO3 through donor doping. Ceramics International, 2022, 48, 5831-5839.	4.8	11
33	Low-temperature synthesis of micro/nano Lithium Fluoride added magnesium aluminate spinel. Ceramics International, 2018, 44, 20122-20131.	4.8	10
34	Studying the cold sintering process of zinc ferrite as an incongruent dissolution system. International Journal of Ceramic Engineering & Science, 2019, 1, 125-135.	1.2	10
35	Preparation of titanium nitride/oxynitride nanotube array via ammonia-free PECVD method for enhancing supercapacitor performance. Journal of Alloys and Compounds, 2022, 904, 163895.	5.5	10
36	A Plackett–Burman design in hydrothermal synthesis of TiO2-derived nanotubes. Journal of Porous Materials, 2010, 17, 719-726.	2.6	8

#	Article	IF	Citations
37	Photocatalytic evaluation of a titania thin film on glazed porcelain substrates via a TiCl4 precursor. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 289-298.	1.7	8
38	Synthesis of Graphene Nanoribbons–Hydroxyapatite Nanocomposite Applicable in Biomedicine and Theranostics. Journal of Nanotheranostics, 2020, 1, 6-18.	3.1	8
39	Investigating the mechanical behavior of hydroxyapatite-reduced graphene oxide nanocomposite under different loading rates. Nano Express, 2020, 1, 010053.	2.4	8
40	1T-WS2/Graphene on activated carbon cloth as a flexible electrode for wearable supercapacitors. Ceramics International, 2022, 48, 8563-8571.	4.8	8
41	Low temperature consolidation of hydroxyapatite-reduced graphene oxide nano-structured powders. Materials Advances, 2020, 1, 1337-1346.	5.4	7
42	Characterization of hydroxyapatite-reduced graphene oxide nanocomposites consolidated via high frequency induction heat sintering method. Journal of Asian Ceramic Societies, 2020, 8, 1296-1309.	2.3	7
43	Characteristics of hydroxyapatite-reduced graphene oxide composite powders synthesized via hydrothermal method in the absence and presence of diethylene glycol. Open Ceramics, 2021, 5, 100067.	2.0	7
44	Statistical evaluation of nano-structured hydroxyapatite mechanical characteristics by employing the Vickers indentation technique. Ceramics International, 2020, 46, 20081-20087.	4.8	7
45	Magnetic and electrical properties of Mg1-xCoxFe2O4 ($x = 0-0.15$) ceramics prepared by the solid-state method. Journal of the European Ceramic Society, 2022, 42, 442-447.	5.7	7
46	Supercapacitive properties of nickel molybdate/rGO hybrids prepared by the hydrothermal method. Surfaces and Interfaces, 2022, 29, 101638.	3.0	7
47	Study on Wavelength and Energy Effects on Pulsed Laser Ablation Synthesis of Aluminum Nanoparticles in Ethanol. , 2009, , .		6
48	Effect of titanium nitride coating on physical properties of three-dimensional graphene. Applied Surface Science, 2015, 356, 399-407.	6.1	6
49	Development of a transparent silica-titania-methyl siliconate nanocoating with photocatalytic-hydrophobic properties aided by response surface method. Materials Research Express, 2019, 6, 106430.	1.6	6
50	Comparison of the effect of argon, hydrogen, and nitrogen gases on the reduced graphene oxide-hydroxyapatite nanocomposites characteristics. BMC Chemistry, 2020, 14, 59.	3.8	6
51	The interactive effect of agitation condition and titania particle size in hydrothermal synthesis of titanate nanostructures. Journal of Nanoparticle Research, 2010, 12, 2723-2728.	1.9	5
52	Effect of annealing temperature on physical properties of nanostructured TiN/3DG composite. Materials and Design, 2016, 90, 524-531.	7.0	5
53	Inverse precipitation synthesis of ZrO2 nanopowder and in-situ coating on MWCNTs. Ceramics International, 2018, 44, 13556-13564.	4.8	5
54	Determination of the physical and mechanical properties of iron-based powder materials produced by microwave sintering. Powder Metallurgy and Metal Ceramics, 2007, 46, 423-428.	0.8	4

#	Article	IF	CITATIONS
55	OPTIMIZING PARAMETERS IN SYNTHESIS OF LiF NANOPOWDERS VIA SOL–GEL METHOD. Nano, 2011, 06, 575-581.	1.0	4
56	Sol-gel synthesis, spark plasma sintering, structural characterization, and thermal conductivity measurement of heavily Nb-doped SrTiO3/TiO2 nanocomposites. Ceramics International, 2020, 46, 3224-3235.	4.8	4
57	Enhanced thermoluminescence of magnesia-doped zirconia nanoparticles exposed to ultraviolet/beta irradiation. Nanotechnology, 2020, 31, 115601.	2.6	4
58	Highly dense Sr0.95Sm0.0125Dy0.0125 \hat{a}_{-i} 0.025Ti0.90Nb0.10O3 $\hat{A}_{\pm}\hat{l}'$ /ZrO2 composite preparation directly through spark plasma sintering and its thermoelectric properties. Dalton Transactions, 2020, 49, 17-22.	3.3	3
59	Solvothermal synthesis of W4S7F as a stable phase with metallic behaviour for energy storage. Journal of Power Sources, 2022, 536, 231325.	7.8	3
60	Synthesis, phase study and magnetic characterisation of Co ₅₀ Fe ₄₀ Cu ₁₀ ternary alloy nanopowders prepared by mechanochemical alloying process. Powder Metallurgy, 2010, 53, 260-264.	1.7	1
61	In Situ Formation of Hydroxyapatite During Powder Metallurgy Preparation of Porous Ti/HA Nano Composite: A Candidate for Dental Implants. Materials Research, 2018, 21, .	1.3	1
62	Enhancing mechanical properties of hydroxyapatite-reduced graphene oxide nanocomposites by increasing the spark plasma sintering temperature. Inorganic and Nano-Metal Chemistry, 2021, 51, 1580-1590.	1.6	1
63	How does water of crystallization influence the optical properties, band structure and photocatalytic activity of tungsten oxide?. Surfaces and Interfaces, 2021, 27, 101493.	3.0	O