
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767165/publications.pdf Version: 2024-02-01



IENNY LONES

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Impact of Fuelwood Moisture Content on the Emission of Gaseous and Particulate Pollutants from a Wood Stove. Combustion Science and Technology, 2023, 195, 133-152.                              | 1.2 | 8         |
| 2  | Modeling and Evaluation of Ash-Forming Element Fate and Occurrence in Woody Biomass Combustion in an Entrained-Flow Burner. ACS Omega, 2022, 7, 16306-16322.                                         | 1.6 | 2         |
| 3  | The effect of biomass ashes and potassium salts on MEA degradation for BECCS. International Journal of Greenhouse Gas Control, 2021, 108, 103305.                                                    | 2.3 | 1         |
| 4  | Examination of Combustion-Generated Smoke Particles from Biomass at Source: Relation to Atmospheric Light Absorption. Combustion Science and Technology, 2020, 192, 130-143.                         | 1.2 | 3         |
| 5  | An Assessment of Contaminants in UK Road-Verge Biomass and the Implications for Use as Anaerobic<br>Digestion Feedstock. Waste and Biomass Valorization, 2020, 11, 1971-1981.                        | 1.8 | 4         |
| 6  | Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel<br>Processing Technology, 2020, 199, 106266.                                                      | 3.7 | 29        |
| 7  | Shape and size transformations of biomass particles during combustion. Fuel, 2020, 261, 116334.                                                                                                      | 3.4 | 25        |
| 8  | The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel<br>Processing Technology, 2020, 210, 106552.                                                       | 3.7 | 34        |
| 9  | The potential use of torrefied Nigerian biomass for combustion applications. Journal of the Energy<br>Institute, 2020, 93, 1726-1736.                                                                | 2.7 | 7         |
| 10 | Fuel flexible power stations: Utilisation of ash co-products as additives for NOx emissions control.<br>Fuel, 2019, 251, 800-807.                                                                    | 3.4 | 10        |
| 11 | High temperature volatile yield and nitrogen partitioning during pyrolysis of coal and biomass fuels.<br>Fuel, 2019, 248, 215-220.                                                                   | 3.4 | 31        |
| 12 | A study on the reactivity of various chars from Turkish fuels obtained at high heating rates. Fuel<br>Processing Technology, 2019, 185, 91-99.                                                       | 3.7 | 15        |
| 13 | The use of equilibrium thermodynamic models for the prediction of inorganic phase changes in the co-firing of wheat straw with El Cerrejon coal. Journal of the Energy Institute, 2019, 92, 813-823. | 2.7 | 17        |
| 14 | PAH emissions from an African cookstove. Journal of the Energy Institute, 2019, 92, 587-593.                                                                                                         | 2.7 | 13        |
| 15 | A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the<br>Energy Institute, 2019, 92, 523-534.                                                       | 2.7 | 50        |
| 16 | Some characteristics of the self-heating of the large scale storage of biomass. Fuel Processing<br>Technology, 2018, 174, 1-8.                                                                       | 3.7 | 30        |
| 17 | Is Black Carbon an Unimportant Iceâ€Nucleating Particle in Mixedâ€Phase Clouds?. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 4273-4283.                                            | 1.2 | 34        |
| 18 | The effects of an additive on the release of potassium in biomass combustion. Fuel, 2018, 214, 647-655.                                                                                              | 3.4 | 76        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Entrained Metal Aerosol Emissions from Air-Fired Biomass and Coal Combustion for Carbon Capture Applications. Materials, 2018, 11, 1819.                                            | 1.3 | 7         |
| 20 | Investigating the impact of an Al-Si additive on the resistivity of biomass ashes. Fuel Processing Technology, 2018, 178, 13-23.                                                    | 3.7 | 10        |
| 21 | Mixing State of Carbonaceous Aerosols of Primary Emissions from "Improved―African Cookstoves.<br>Environmental Science & Technology, 2018, 52, 10134-10143.                         | 4.6 | 18        |
| 22 | Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 2017,<br>98, 26-36.                                                                  | 2.9 | 22        |
| 23 | Organic carbon emissions from the co-firing of coal and wood in a fixed bed combustor. Fuel, 2017, 195, 226-231.                                                                    | 3.4 | 25        |
| 24 | Ignition and combustion of single particles of coal and biomass. Fuel, 2017, 202, 650-655.                                                                                          | 3.4 | 90        |
| 25 | Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling. Fuel, 2017, 203, 868-876.                                                                      | 3.4 | 37        |
| 26 | Heating with Biomass in the United Kingdom: Lessons from New Zealand. Atmospheric Environment, 2017, 152, 431-454.                                                                  | 1.9 | 9         |
| 27 | Ignition and Combustion of Single Particles of Coal and Biomass under O2/CO2 Atmospheres. Energy<br>Procedia, 2017, 114, 6067-6073.                                                 | 1.8 | 16        |
| 28 | Gas phase potassium release from a single particle of biomass during high temperature combustion.<br>Proceedings of the Combustion Institute, 2017, 36, 2207-2215.                  | 2.4 | 43        |
| 29 | The Impact of Fuel Properties on the Composition of Soot Produced by the Combustion of Residential Solid Fuels in a Domestic Stove. Fuel Processing Technology, 2016, 151, 117-125. | 3.7 | 46        |
| 30 | A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis. Fuel, 2016, 182, 161-165.                                           | 3.4 | 46        |
| 31 | Observations on the release of gas-phase potassium during the combustion of single particles of biomass. Fuel, 2016, 182, 110-117.                                                  | 3.4 | 100       |
| 32 | Experimental and theoretical methods for evaluating ash properties of pine and El Cerrejon coal used in co-firing. Fuel, 2016, 183, 39-54.                                          | 3.4 | 32        |
| 33 | Ignition Risks of Biomass Dust on Hot Surfaces. Energy & Fuels, 2016, 30, 4398-4404.                                                                                                | 2.5 | 6         |
| 34 | A study of the combustion chemistry of petroleum and bio-fuel oil asphaltenes. Fuel, 2016, 182, 517-524.                                                                            | 3.4 | 14        |
| 35 | The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Processing Technology, 2016, 142, 115-123.  | 3.7 | 126       |
| 36 | An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions.<br>Energy Conversion and Management, 2016, 113, 177-188.                          | 4.4 | 73        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. Journal of the Energy Institute, 2016, 89, 159-171.       | 2.7 | 84        |
| 38 | Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing. Frontiers in Energy Research, 2015, 3, .                                                | 1.2 | 16        |
| 39 | Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping. Bioresource Technology, 2015, 176, 257-266.                        | 4.8 | 25        |
| 40 | Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel, 2015, 141, 275-284.                         | 3.4 | 74        |
| 41 | Single particle flame-combustion studies on solid biomass fuels. Fuel, 2015, 151, 21-30.                                                                                          | 3.4 | 71        |
| 42 | A study of smoke formation from wood combustion. Fuel Processing Technology, 2015, 137, 327-332.                                                                                  | 3.7 | 17        |
| 43 | The combustion characteristics of high-heating-rate chars fromÂuntreated and torrefied biomass fuels. Biomass and Bioenergy, 2015, 82, 63-72.                                     | 2.9 | 67        |
| 44 | Low temperature ignition of biomass. Fuel Processing Technology, 2015, 134, 372-377.                                                                                              | 3.7 | 85        |
| 45 | Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity.<br>Energy, 2015, 91, 655-662.                                                      | 4.5 | 109       |
| 46 | Some Aspects of Modeling NOx Formation Arising from the Combustion of 100% Wood in a Pulverized Fuel Furnace. Combustion Science and Technology, 2014, 186, 672-683.              | 1.2 | 11        |
| 47 | A calculation method of biomass slagging rate based on crystallization theory. Asia-Pacific Journal of<br>Chemical Engineering, 2014, 9, 456-463.                                 | 0.8 | 7         |
| 48 | Mathematical Modelling. SpringerBriefs in Applied Sciences and Technology, 2014, , 71-97.                                                                                         | 0.2 | 0         |
| 49 | Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame, 2014, 161, 1096-1108. | 2.8 | 174       |
| 50 | Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 2014, 64, 162-174.                                                               | 2.9 | 138       |
| 51 | Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel, 2014, 117, 851-869.                                                                               | 3.4 | 69        |
| 52 | Pollutants Generated by the Combustion of Solid Biomass Fuels. SpringerBriefs in Applied Sciences and Technology, 2014, , .                                                       | 0.2 | 16        |
| 53 | Characterization of Selected Nigerian Biomass for Combustion and Pyrolysis Applications. Energy<br>& Fuels, 2014, 28, 3821-3832.                                                  | 2.5 | 23        |
| 54 | Combustion of Solid Biomass: Classification of Fuels. SpringerBriefs in Applied Sciences and Technology, 2014, , 9-24.                                                            | 0.2 | 3         |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Introduction to Biomass Combustion. SpringerBriefs in Applied Sciences and Technology, 2014, , 1-7.                                                                                                               | 0.2  | 1         |
| 56 | CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release.<br>Applied Energy, 2013, 104, 653-665.                                                                            | 5.1  | 59        |
| 57 | Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 2013, 103, 21-30.                                                                                             | 2.6  | 177       |
| 58 | The combustion of droplets of high-asphaltene heavy oils. Fuel, 2013, 103, 835-842.                                                                                                                               | 3.4  | 22        |
| 59 | Soot Formation from the Combustion of Biomass Pyrolysis Products and a Hydrocarbon Fuel,<br><i>n</i> -Decane: An Aerosol Time Of Flight Mass Spectrometer (ATOFMS) Study. Energy & Fuels,<br>2013, 27, 1668-1678. | 2.5  | 32        |
| 60 | Nitrogen in Biomass Char and Its Fate during Combustion: A Model Compound Approach. Energy &<br>Fuels, 2012, 26, 6482-6491.                                                                                       | 2.5  | 40        |
| 61 | Commodity Fuels from Biomass through Pretreatment and Torrefaction: Effects of Mineral Content on Torrefied Fuel Characteristics and Quality. Energy & Fuels, 2012, 26, 6466-6474.                                | 2.5  | 135       |
| 62 | Microalgae biorefinery concept based on hydrothermal microwave pyrolysis. Green Chemistry, 2012,<br>14, 3251.                                                                                                     | 4.6  | 29        |
| 63 | Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresource Technology, 2012, 119, 157-165.                                                                                  | 4.8  | 147       |
| 64 | Small-scale co-utilisation of coal and biomass. Fuel, 2012, 101, 84-89.                                                                                                                                           | 3.4  | 34        |
| 65 | Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Processing Technology, 2012, 104, 189-197.                                                                               | 3.7  | 138       |
| 66 | Study of Miscanthus x giganteus ash composition – Variation with agronomy and assessment method.<br>Fuel, 2012, 95, 50-62.                                                                                        | 3.4  | 49        |
| 67 | Numerical investigation of NO emissions from an entrained flow reactor under oxy-coal conditions.<br>Fuel Processing Technology, 2012, 93, 53-64.                                                                 | 3.7  | 17        |
| 68 | Fuel characteristics of wheat-based Dried Distillers Grains and Solubles (DDGS) for thermal conversion in power plants. Fuel Processing Technology, 2012, 94, 123-130.                                            | 3.7  | 18        |
| 69 | Combustion properties of torrefied willow compared with bituminous coals. Fuel Processing Technology, 2012, 101, 1-9.                                                                                             | 3.7  | 72        |
| 70 | Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 2012, 38, 113-137.                                                                                              | 15.8 | 470       |
| 71 | Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy<br>supply. Energy and Environmental Science, 2011, 4, 1216.                                                 | 15.6 | 240       |
| 72 | Formation and emission of polycyclic aromatic hydrocarbon soot precursors during coal combustion. Journal of the Energy Institute, 2011, , .                                                                      | 2.7  | 0         |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Computational fluid dynamic modelling of combustion of milled torrefied wood. Journal of the Energy Institute, 2011, 84, 102-104.                                                        | 2.7 | 2         |
| 74 | Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresource Technology, 2011, 102, 226-234.                  | 4.8 | 204       |
| 75 | Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel, 2011, 90, 598-607.                                                                                             | 3.4 | 179       |
| 76 | The combustion of droplets of liquid fuels and biomass particles. Fuel, 2011, 90, 1113-1119.                                                                                             | 3.4 | 19        |
| 77 | Influence of cation on the pyrolysis and oxidation of alginates. Journal of Analytical and Applied Pyrolysis, 2011, 91, 344-351.                                                         | 2.6 | 58        |
| 78 | Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89, 2234-2243.                                                                                         | 3.4 | 525       |
| 79 | Combustion properties of some power station biomass fuels. Fuel, 2010, 89, 2881-2890.                                                                                                    | 3.4 | 99        |
| 80 | An investigation of the grindability of two torrefied energy crops. Fuel, 2010, 89, 3911-3918.                                                                                           | 3.4 | 254       |
| 81 | Catalysis in biomass pyrolysis and combustion. Focus on Catalysts, 2010, 2010, 1-2.                                                                                                      | 0.7 | 1         |
| 82 | In Situ Study of Soot from the Combustion of a Biomass Pyrolysis Intermediate—Eugenol—and<br>n-Decane Using Aerosol Time of Flight Mass Spectrometry. Energy & Fuels, 2010, 24, 439-445. | 2.5 | 16        |
| 83 | Kinetics of the Thermal Decomposition of Biomass. Energy & amp; Fuels, 2010, 24, 1274-1282.                                                                                              | 2.5 | 133       |
| 84 | Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresource Technology, 2009, 100, 6428-6433.                     | 4.8 | 55        |
| 85 | Modelling methods for co-fired pulverised fuel furnaces. Fuel, 2009, 88, 2448-2454.                                                                                                      | 3.4 | 88        |
| 86 | The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor. Fuel, 2009, 88, 2409-2417.                              | 3.4 | 67        |
| 87 | Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis, 2009, 85, 3-10.              | 2.6 | 178       |
| 88 | The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 2009, 100, 6064-6068.                        | 4.8 | 147       |
| 89 | Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis, 2008, 83, 12-25.          | 2.6 | 216       |
| 90 | Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied<br>Pyrolysis, 2008, 83, 197-204.                                                           | 2.6 | 94        |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 2008, 99, 6494-6504.                                                   | 4.8 | 554       |
| 92  | Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 87, 844-856.                         | 3.4 | 741       |
| 93  | The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel,<br>2008, 87, 1230-1240.                                   | 3.4 | 477       |
| 94  | Combustion of a Single Particle of Biomass. Energy & amp; Fuels, 2008, 22, 306-316.                                                                                   | 2.5 | 160       |
| 95  | Mechanistic Aspects of Soot Formation from the Combustion of Pine Wood. Energy & Fuels, 2008, 22, 3771-3778.                                                          | 2.5 | 83        |
| 96  | Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice. Journal of the Energy Institute, 2008, 81, 234-241.      | 2.7 | 61        |
| 97  | Modelling the competition between annealing and oxidation in the carbon–oxygen reaction. Carbon, 2007, 45, 677-680.                                                   | 5.4 | 18        |
| 98  | Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 2007, 86, 60-72.                                                      | 3.4 | 192       |
| 99  | The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel, 2007, 86, 1560-1569.                             | 3.4 | 337       |
| 100 | Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel, 2007, 86, 1959-1965.                                                   | 3.4 | 105       |
| 101 | Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel, 2007, 86, 2389-2402.                                                           | 3.4 | 288       |
| 102 | An investigation of the thermal and catalytic behaviour of potassium in biomass combustion.<br>Proceedings of the Combustion Institute, 2007, 31, 1955-1963.          | 2.4 | 160       |
| 103 | Emission of Oxygenated Species from the Combustion of Pine Wood and its Relation to Soot<br>Formation. Chemical Engineering Research and Design, 2007, 85, 430-440.   | 2.7 | 79        |
| 104 | Influence of minerals and added calcium on the pyrolysis and co-pyrolysis of coal and biomass.<br>Journal of the Energy Institute, 2005, 78, 126-138.                 | 2.7 | 12        |
| 105 | Co-firing pulverised coal and biomass: a modeling approach. Proceedings of the Combustion Institute, 2005, 30, 2955-2964.                                             | 2.4 | 127       |
| 106 | A study of different soots using pyrolysis–GC–MS and comparison with solvent extractable material.<br>Journal of Analytical and Applied Pyrolysis, 2005, 74, 494-501. | 2.6 | 46        |
| 107 | Devolatilisation characteristics of coal and biomass blends. Journal of Analytical and Applied<br>Pyrolysis, 2005, 74, 502-511.                                       | 2.6 | 147       |
| 108 | Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel, 2005, 84, 2196-2203.                                 | 3.4 | 97        |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The selective oxidation of ammonia over alumina supported catalysts–experiments and modelling.<br>Applied Catalysis B: Environmental, 2005, 60, 139-146.                                    | 10.8 | 22        |
| 110 | Atmospheric chemistry implications of the emission of biomass smoke. Journal of the Energy Institute, 2005, 78, 199-200.                                                                    | 2.7  | 10        |
| 111 | Emission of trace toxic metals during pulverized fuel combustion of Czech coals. International<br>Journal of Energy Research, 2003, 27, 1181-1203.                                          | 2.2  | 24        |
| 112 | Burn-out of pulverised coal and biomass charsâ~†. Fuel, 2003, 82, 2097-2105.                                                                                                                | 3.4  | 54        |
| 113 | An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification. Catalysis Today, 2003, 81, 681-692.                               | 2.2  | 90        |
| 114 | Measurement and prediction of the emission of pollutants from the combustion of coal and biomass in a fixed bed furnace. Fuel, 2002, 81, 571-582.                                           | 3.4  | 126       |
| 115 | Modeling the reaction of oxygen with coal and biomass chars. Proceedings of the Combustion Institute, 2002, 29, 415-421.                                                                    | 2.4  | 21        |
| 116 | Modelling coal combustion: the current position. Fuel, 2002, 81, 605-618.                                                                                                                   | 3.4  | 153       |
| 117 | Conversion of volatile-nitrogen and char-nitrogen to NO during combustion. Fuel, 2002, 81, 2363-2369.                                                                                       | 3.4  | 37        |
| 118 | A study of the reaction of oxygen with graphite: Model chemistry. Faraday Discussions, 2001, 119, 385-394.                                                                                  | 1.6  | 44        |
| 119 | Development of pyrolysis–GC with selective detection: coupling of pyrolysis–GC to atomic emission detection (py–GC–AED). Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 371-385. | 2.6  | 11        |
| 120 | Combustion of pulverised coal and biomass. Progress in Energy and Combustion Science, 2001, 27, 587-610.                                                                                    | 15.8 | 227       |
| 121 | A comprehensive biomass combustion model. Renewable Energy, 2000, 19, 229-234.                                                                                                              | 4.3  | 41        |
| 122 | The combustion of coal and some other solid fuels. Proceedings of the Combustion Institute, 2000, 28, 2141-2162.                                                                            | 2.4  | 59        |
| 123 | Biomass Combustion Modelling. , 2000, , 1373-1376.                                                                                                                                          |      | 0         |
| 124 | Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors. Fuel, 1999, 78, 1171-1179.                               | 3.4  | 70        |
| 125 | Emission of volatile organic compounds from coal combustion. Fuel, 1999, 78, 1527-1538.                                                                                                     | 3.4  | 46        |
| 126 | The oxidative reactivity of coal chars in relation to their structure. Fuel, 1999, 78, 1539-1552.                                                                                           | 3.4  | 74        |

| #   | Article                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | An extended coal combustion model. Fuel, 1999, 78, 1745-1754.                                                                                          | 3.4 | 51        |
| 128 | Metalloporphyrin-derived carbons: models for investigating NOx release from coal char combustion.<br>Carbon, 1999, 37, 1123-1131.                      | 5.4 | 24        |
| 129 | Approaches to modelling heterogeneous char NO formation/destruction during Pulverised coal combustion. Carbon, 1999, 37, 1545-1552.                    | 5.4 | 49        |
| 130 | A Comparative Study of Sulfur Poisoning and Regeneration of Precious-Metal Catalysts. Energy &<br>Fuels, 1998, 12, 1130-1134.                          | 2.5 | 68        |
| 131 | Porphyrin- and metalloporphyrin-derived carbons as models for coal char combustion and pyrolysis.<br>Fuel, 1997, 76, 1235-1240.                        | 3.4 | 6         |
| 132 | The nature of hydrocarbon emissions formed during the cooling of combustion products. Fuel, 1997, 76, 861-864.                                         | 3.4 | 17        |
| 133 | Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 1995, 33, 833-843. | 5.4 | 63        |
| 134 | Carbon-13 materials as models for NOx and N2O release during coal char combustion. Carbon, 1995, 33, 1129-1139.                                        | 5.4 | 22        |
| 135 | Post-combustion and Oxy-combustion Technologies. , 0, , 47-66.                                                                                         |     | 2         |