Jenny Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767165/publications.pdf

Version: 2024-02-01

25014 30058 11,214 135 57 103 citations h-index g-index papers 136 136 136 9201 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 87, 844-856.	3.4	741
2	Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource Technology, 2008, 99, 6494-6504.	4.8	554
3	Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89, 2234-2243.	3.4	525
4	The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, 2008, 87, 1230-1240.	3.4	477
5	Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 2012, 38, 113-137.	15.8	470
6	The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel, 2007, 86, 1560-1569.	3.4	337
7	Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel, 2007, 86, 2389-2402.	3.4	288
8	An investigation of the grindability of two torrefied energy crops. Fuel, 2010, 89, 3911-3918.	3.4	254
9	Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy and Environmental Science, 2011, 4, 1216.	15.6	240
10	Combustion of pulverised coal and biomass. Progress in Energy and Combustion Science, 2001, 27, 587-610.	15.8	227
11	Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis, 2008, 83, 12-25.	2.6	216
12	Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresource Technology, 2011, 102, 226-234.	4.8	204
13	Influence of particle size on the analytical and chemical properties of two energy crops. Fuel, 2007, 86, 60-72.	3.4	192
14	Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel, 2011, 90, 598-607.	3.4	179
15	Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis, 2009, 85, 3-10.	2.6	178
16	Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis, 2013, 103, 21-30.	2.6	177
17	Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame, 2014, 161, 1096-1108.	2.8	174
18	An investigation of the thermal and catalytic behaviour of potassium in biomass combustion. Proceedings of the Combustion Institute, 2007, 31, 1955-1963.	2.4	160

#	Article	IF	CITATIONS
19	Combustion of a Single Particle of Biomass. Energy & Samp; Fuels, 2008, 22, 306-316.	2.5	160
20	Modelling coal combustion: the current position. Fuel, 2002, 81, 605-618.	3.4	153
21	Devolatilisation characteristics of coal and biomass blends. Journal of Analytical and Applied Pyrolysis, 2005, 74, 502-511.	2.6	147
22	The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 2009, 100, 6064-6068.	4.8	147
23	Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresource Technology, 2012, 119, 157-165.	4.8	147
24	Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Processing Technology, 2012, 104, 189-197.	3.7	138
25	Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 2014, 64, 162-174.	2.9	138
26	Commodity Fuels from Biomass through Pretreatment and Torrefaction: Effects of Mineral Content on Torrefied Fuel Characteristics and Quality. Energy & Samp; Fuels, 2012, 26, 6466-6474.	2.5	135
27	Kinetics of the Thermal Decomposition of Biomass. Energy & Energy	2.5	133
28	Co-firing pulverised coal and biomass: a modeling approach. Proceedings of the Combustion Institute, 2005, 30, 2955-2964.	2.4	127
29	Measurement and prediction of the emission of pollutants from the combustion of coal and biomass in a fixed bed furnace. Fuel, 2002, 81, 571-582.	3.4	126
30	The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Processing Technology, 2016, 142, 115-123.	3.7	126
31	Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity. Energy, 2015, 91, 655-662.	4.5	109
32	Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel, 2007, 86, 1959-1965.	3.4	105
33	Observations on the release of gas-phase potassium during the combustion of single particles of biomass. Fuel, 2016, 182, 110-117.	3.4	100
34	Combustion properties of some power station biomass fuels. Fuel, 2010, 89, 2881-2890.	3.4	99
35	Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel, 2005, 84, 2196-2203.	3.4	97
36	Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied Pyrolysis, 2008, 83, 197-204.	2.6	94

#	Article	IF	CITATIONS
37	An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification. Catalysis Today, 2003, 81, 681-692.	2.2	90
38	Ignition and combustion of single particles of coal and biomass. Fuel, 2017, 202, 650-655.	3.4	90
39	Modelling methods for co-fired pulverised fuel furnaces. Fuel, 2009, 88, 2448-2454.	3.4	88
40	Low temperature ignition of biomass. Fuel Processing Technology, 2015, 134, 372-377.	3.7	85
41	A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. Journal of the Energy Institute, 2016, 89, 159-171.	2.7	84
42	Mechanistic Aspects of Soot Formation from the Combustion of Pine Wood. Energy & Samp; Fuels, 2008, 22, 3771-3778.	2.5	83
43	Emission of Oxygenated Species from the Combustion of Pine Wood and its Relation to Soot Formation. Chemical Engineering Research and Design, 2007, 85, 430-440.	2.7	79
44	The effects of an additive on the release of potassium in biomass combustion. Fuel, 2018, 214, 647-655.	3.4	76
45	The oxidative reactivity of coal chars in relation to their structure. Fuel, 1999, 78, 1539-1552.	3.4	74
46	Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel, 2015, 141, 275-284.	3.4	74
47	An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions. Energy Conversion and Management, 2016, 113, 177-188.	4.4	73
48	Combustion properties of torrefied willow compared with bituminous coals. Fuel Processing Technology, 2012, 101, 1-9.	3.7	72
49	Single particle flame-combustion studies on solid biomass fuels. Fuel, 2015, 151, 21-30.	3.4	71
50	Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors. Fuel, 1999, 78, 1171-1179.	3.4	70
51	Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel, 2014, 117, 851-869.	3.4	69
52	A Comparative Study of Sulfur Poisoning and Regeneration of Precious-Metal Catalysts. Energy & Energy & Fuels, 1998, 12, 1130-1134.	2.5	68
53	The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor. Fuel, 2009, 88, 2409-2417.	3.4	67
54	The combustion characteristics of high-heating-rate chars fromÂuntreated and torrefied biomass fuels. Biomass and Bioenergy, 2015, 82, 63-72.	2.9	67

#	Article	IF	CITATIONS
55	Detection of reactive intermediate nitrogen and sulfur species in the combustion of carbons that are models for coal chars. Carbon, 1995, 33, 833-843.	5.4	63
56	Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice. Journal of the Energy Institute, 2008, 81, 234-241.	2.7	61
57	The combustion of coal and some other solid fuels. Proceedings of the Combustion Institute, 2000, 28, 2141-2162.	2.4	59
58	CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release. Applied Energy, 2013, 104, 653-665.	5.1	59
59	Influence of cation on the pyrolysis and oxidation of alginates. Journal of Analytical and Applied Pyrolysis, 2011, 91, 344-351.	2.6	58
60	Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresource Technology, 2009, 100, 6428-6433.	4.8	55
61	Burn-out of pulverised coal and biomass charsâ~†. Fuel, 2003, 82, 2097-2105.	3.4	54
62	An extended coal combustion model. Fuel, 1999, 78, 1745-1754.	3.4	51
63	A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the Energy Institute, 2019, 92, 523-534.	2.7	50
64	Approaches to modelling heterogeneous char NO formation/destruction during Pulverised coal combustion. Carbon, 1999, 37, 1545-1552.	5.4	49
65	Study of Miscanthus x giganteus ash composition – Variation with agronomy and assessment method. Fuel, 2012, 95, 50-62.	3.4	49
66	Emission of volatile organic compounds from coal combustion. Fuel, 1999, 78, 1527-1538.	3.4	46
67	A study of different soots using pyrolysis–GC–MS and comparison with solvent extractable material. Journal of Analytical and Applied Pyrolysis, 2005, 74, 494-501.	2.6	46
68	The Impact of Fuel Properties on the Composition of Soot Produced by the Combustion of Residential Solid Fuels in a Domestic Stove. Fuel Processing Technology, 2016, 151, 117-125.	3.7	46
69	A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis. Fuel, 2016, 182, 161-165.	3.4	46
70	A study of the reaction of oxygen with graphite: Model chemistry. Faraday Discussions, 2001, 119, 385-394.	1.6	44
71	Gas phase potassium release from a single particle of biomass during high temperature combustion. Proceedings of the Combustion Institute, 2017, 36, 2207-2215.	2.4	43
72	A comprehensive biomass combustion model. Renewable Energy, 2000, 19, 229-234.	4.3	41

#	Article	lF	CITATIONS
73	Nitrogen in Biomass Char and Its Fate during Combustion: A Model Compound Approach. Energy & Sump; Fuels, 2012, 26, 6482-6491.	2.5	40
74	Conversion of volatile-nitrogen and char-nitrogen to NO during combustion. Fuel, 2002, 81, 2363-2369.	3.4	37
75	Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling. Fuel, 2017, 203, 868-876.	3.4	37
76	Small-scale co-utilisation of coal and biomass. Fuel, 2012, 101, 84-89.	3.4	34
77	Is Black Carbon an Unimportant Iceâ€Nucleating Particle in Mixedâ€Phase Clouds?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4273-4283.	1.2	34
78	The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel Processing Technology, 2020, 210, 106552.	3.7	34
79	Soot Formation from the Combustion of Biomass Pyrolysis Products and a Hydrocarbon Fuel, <i>n</i> -Decane: An Aerosol Time Of Flight Mass Spectrometer (ATOFMS) Study. Energy &	2.5	32
80	Experimental and theoretical methods for evaluating ash properties of pine and El Cerrejon coal used in co-firing. Fuel, 2016, 183, 39-54.	3.4	32
81	High temperature volatile yield and nitrogen partitioning during pyrolysis of coal and biomass fuels. Fuel, 2019, 248, 215-220.	3.4	31
82	Some characteristics of the self-heating of the large scale storage of biomass. Fuel Processing Technology, 2018, 174, 1-8.	3.7	30
83	Microalgae biorefinery concept based on hydrothermal microwave pyrolysis. Green Chemistry, 2012, 14, 3251.	4.6	29
84	Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 2020, 199, 106266.	3.7	29
85	Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping. Bioresource Technology, 2015, 176, 257-266.	4.8	25
86	Organic carbon emissions from the co-firing of coal and wood in a fixed bed combustor. Fuel, 2017, 195, 226-231.	3.4	25
87	Shape and size transformations of biomass particles during combustion. Fuel, 2020, 261, 116334.	3.4	25
88	Metalloporphyrin-derived carbons: models for investigating NOx release from coal char combustion. Carbon, 1999, 37, 1123-1131.	5.4	24
89	Emission of trace toxic metals during pulverized fuel combustion of Czech coals. International Journal of Energy Research, 2003, 27, 1181-1203.	2.2	24
90	Characterization of Selected Nigerian Biomass for Combustion and Pyrolysis Applications. Energy & Ener	2.5	23

#	Article	IF	CITATIONS
91	Carbon-13 materials as models for NOx and N2O release during coal char combustion. Carbon, 1995, 33, 1129-1139.	5.4	22
92	The selective oxidation of ammonia over alumina supported catalysts–experiments and modelling. Applied Catalysis B: Environmental, 2005, 60, 139-146.	10.8	22
93	The combustion of droplets of high-asphaltene heavy oils. Fuel, 2013, 103, 835-842.	3.4	22
94	Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 2017, 98, 26-36.	2.9	22
95	Modeling the reaction of oxygen with coal and biomass chars. Proceedings of the Combustion Institute, 2002, 29, 415-421.	2.4	21
96	The combustion of droplets of liquid fuels and biomass particles. Fuel, 2011, 90, 1113-1119.	3.4	19
97	Modelling the competition between annealing and oxidation in the carbon–oxygen reaction. Carbon, 2007, 45, 677-680.	5.4	18
98	Fuel characteristics of wheat-based Dried Distillers Grains and Solubles (DDGS) for thermal conversion in power plants. Fuel Processing Technology, 2012, 94, 123-130.	3.7	18
99	Mixing State of Carbonaceous Aerosols of Primary Emissions from "Improved―African Cookstoves. Environmental Science & Env	4.6	18
100	The nature of hydrocarbon emissions formed during the cooling of combustion products. Fuel, 1997, 76, 861-864.	3.4	17
101	Numerical investigation of NO emissions from an entrained flow reactor under oxy-coal conditions. Fuel Processing Technology, 2012, 93, 53-64.	3.7	17
102	A study of smoke formation from wood combustion. Fuel Processing Technology, 2015, 137, 327-332.	3.7	17
103	The use of equilibrium thermodynamic models for the prediction of inorganic phase changes in the co-firing of wheat straw with El Cerrejon coal. Journal of the Energy Institute, 2019, 92, 813-823.	2.7	17
104	In Situ Study of Soot from the Combustion of a Biomass Pyrolysis Intermediateâ€"Eugenolâ€"and n-Decane Using Aerosol Time of Flight Mass Spectrometry. Energy & Energy & 2010, 24, 439-445.	2.5	16
105	Pollutants Generated by the Combustion of Solid Biomass Fuels. SpringerBriefs in Applied Sciences and Technology, 2014, , .	0.2	16
106	Stability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing. Frontiers in Energy Research, 2015, 3, .	1.2	16
107	Ignition and Combustion of Single Particles of Coal and Biomass under O2/CO2 Atmospheres. Energy Procedia, 2017, 114, 6067-6073.	1.8	16
108	A study on the reactivity of various chars from Turkish fuels obtained at high heating rates. Fuel Processing Technology, 2019, 185, 91-99.	3.7	15

#	Article	IF	CITATIONS
109	A study of the combustion chemistry of petroleum and bio-fuel oil asphaltenes. Fuel, 2016, 182, 517-524.	3.4	14
110	PAH emissions from an African cookstove. Journal of the Energy Institute, 2019, 92, 587-593.	2.7	13
111	Influence of minerals and added calcium on the pyrolysis and co-pyrolysis of coal and biomass. Journal of the Energy Institute, 2005, 78, 126-138.	2.7	12
112	Development of pyrolysis–GC with selective detection: coupling of pyrolysis–GC to atomic emission detection (py–GC–AED). Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 371-385.	2.6	11
113	Some Aspects of Modeling NOx Formation Arising from the Combustion of 100% Wood in a Pulverized Fuel Furnace. Combustion Science and Technology, 2014, 186, 672-683.	1.2	11
114	Atmospheric chemistry implications of the emission of biomass smoke. Journal of the Energy Institute, 2005, 78, 199-200.	2.7	10
115	Investigating the impact of an Al-Si additive on the resistivity of biomass ashes. Fuel Processing Technology, 2018, 178, 13-23.	3.7	10
116	Fuel flexible power stations: Utilisation of ash co-products as additives for NOx emissions control. Fuel, 2019, 251, 800-807.	3.4	10
117	Heating with Biomass in the United Kingdom: Lessons from New Zealand. Atmospheric Environment, 2017, 152, 431-454.	1.9	9
118	The Impact of Fuelwood Moisture Content on the Emission of Gaseous and Particulate Pollutants from a Wood Stove. Combustion Science and Technology, 2023, 195, 133-152.	1.2	8
119	A calculation method of biomass slagging rate based on crystallization theory. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 456-463.	0.8	7
120	Entrained Metal Aerosol Emissions from Air-Fired Biomass and Coal Combustion for Carbon Capture Applications. Materials, 2018, 11, 1819.	1.3	7
121	The potential use of torrefied Nigerian biomass for combustion applications. Journal of the Energy Institute, 2020, 93, 1726-1736.	2.7	7
122	Porphyrin- and metalloporphyrin-derived carbons as models for coal char combustion and pyrolysis. Fuel, 1997, 76, 1235-1240.	3.4	6
123	Ignition Risks of Biomass Dust on Hot Surfaces. Energy & Samp; Fuels, 2016, 30, 4398-4404.	2.5	6
124	An Assessment of Contaminants in UK Road-Verge Biomass and the Implications for Use as Anaerobic Digestion Feedstock. Waste and Biomass Valorization, 2020, 11, 1971-1981.	1.8	4
125	Examination of Combustion-Generated Smoke Particles from Biomass at Source: Relation to Atmospheric Light Absorption. Combustion Science and Technology, 2020, 192, 130-143.	1.2	3
126	Combustion of Solid Biomass: Classification of Fuels. SpringerBriefs in Applied Sciences and Technology, 2014, , 9-24.	0.2	3

#	Article	IF	CITATIONS
127	Computational fluid dynamic modelling of combustion of milled torrefied wood. Journal of the Energy Institute, 2011, 84, 102-104.	2.7	2
128	Post-combustion and Oxy-combustion Technologies. , 0, , 47-66.		2
129	Modeling and Evaluation of Ash-Forming Element Fate and Occurrence in Woody Biomass Combustion in an Entrained-Flow Burner. ACS Omega, 2022, 7, 16306-16322.	1.6	2
130	Catalysis in biomass pyrolysis and combustion. Focus on Catalysts, 2010, 2010, 1-2.	0.7	1
131	The effect of biomass ashes and potassium salts on MEA degradation for BECCS. International Journal of Greenhouse Gas Control, 2021, 108, 103305.	2.3	1
132	Introduction to Biomass Combustion. SpringerBriefs in Applied Sciences and Technology, 2014, , 1-7.	0.2	1
133	Biomass Combustion Modelling. , 2000, , 1373-1376.		0
134	Formation and emission of polycyclic aromatic hydrocarbon soot precursors during coal combustion. Journal of the Energy Institute, $2011, \ldots$	2.7	0
135	Mathematical Modelling. SpringerBriefs in Applied Sciences and Technology, 2014, , 71-97.	0.2	0